⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 estimatevars.m

📁 非线型因素分析matlab仿真程序包
💻 M
字号:
function v_x = estimatevars(x, vprior, v_x0, dim)% ESTIMATEVARS  Estimate parameters for variables with zero mean%%    ESTIMATEVARS can be used to estimate variance parameter%    values for variables that are assumed to have zero mean.%    V_X = ESTIMATEVARS(X, VPRIOR, V_X0, DIM) finds the estimate V_X for%    variance parameters of X with previous value V_X0 and%    hyperparameter value VPRIOR.  Different samples of data%    are assumed to be along dimension DIM (default: 2).% Copyright (C) 1999-2000 Antti Honkela, Harri Valpola,% and Xavier Giannakopoulos.%% This package comes with ABSOLUTELY NO WARRANTY; for details% see License.txt in the program package.  This is free software,% and you are welcome to redistribute it under certain conditions;% see License.txt for details.if nargin < 4  dim = 2;endepsilon = 1e-5;minstep = -0.5;basex = v_x0.e;N = size(x, dim);sueff = exp(2*vprior.var.e - 2*vprior.var.var);xval = sum(x.e .^ 2 + x.var, dim);beta = sueff .* xval .* exp(-2 * basex + 2 * v_x0.var);gamma = vprior.mean.e - N * sueff - basex;t = zeros(size(v_x0));% solve t - beta * exp(-2 t) - gamma = 0% using Newton's iterationstep = ones(size(v_x0)) + epsilon;while max(abs(step)) > epsilon  step = (t - beta .* exp(-2 * t) - gamma) ./ (-1 - 2*beta.*exp(-2 * t));  step = step .* (step >= minstep) + minstep * (step < minstep);  t = t + step;endnew_mean = basex + t;new_var = sueff ./ (1 + 2*(t - gamma));v_x = probdist(new_mean, new_var);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -