📄 tmth.cpp
字号:
X(1,1) = BLU.LogDeterminant().Value()-B.LogDeterminant().Value(); Clean(X,0.000000001); Print(X); UpperBandMatrix U; U << B; LowerBandMatrix L; L << B; DiagonalMatrix D; D << B; Print( Matrix(L + (U - D - B)) ); for (i=1; i<=8; i++) A.Column(i) << B.Column(i); Print(Matrix(A-B)); } { Tracer et1("Stage 2"); BandMatrix A(7,2,2); int i,j; for (i=1; i<=7; i++) for (j=1; j<=7; j++) { int k=i-j; if (k<0) k = -k; if (k==0) A(i,j)=6; else if (k==1) A(i,j) = -4; else if (k==2) A(i,j) = 1; A(1,1) = A(7,7) = 5; } DiagonalMatrix D(7); D = 0.0; A = A - D; BandLUMatrix B(A); Matrix M = A; ColumnVector V(6); V(1) = LogDeterminant(B).Value(); V(2) = LogDeterminant(A).Value(); V(3) = LogDeterminant(M).Value(); V(4) = Determinant(B); V(5) = Determinant(A); V(6) = Determinant(M); V = V / 64 - 1; Clean(V,0.000000001); Print(V); ColumnVector X(7);#ifdef ATandT Real a[7]; // the previous statement causes a core dump in tmti.cpp // on the HP9000 - seems very strange. Possibly the exception // mechanism is failing to track the stack correctly. If you get // this problem replace by the following statement.// Real* a = new Real [7]; if (!a) exit(1); a[0]=1; a[1]=2; a[2]=3; a[3]=4; a[4]=5; a[5]=6; a[6]=7;#else Real a[] = {1,2,3,4,5,6,7};#endif X << a;// include these if you are using the previous dynamic definition of a//#ifdef ATandT// delete [] a;//#endif M = (M.i()*X).t() - (B.i()*X).t() * 2.0 + (A.i()*X).t(); Clean(M,0.000000001); Print(M); BandMatrix P(80,2,5); ColumnVector CX(80); for (i=1; i<=80; i++) for (j=1; j<=80; j++) { int d = i-j; if (d<=2 && d>=-5) P(i,j) = i + j/100.0; } for (i=1; i<=80; i++) CX(i) = i*100.0; Matrix MP = P; ColumnVector V1 = P.i() * CX; ColumnVector V2 = MP.i() * CX; V = V1 - V2; Clean(V,0.000000001); Print(V); V1 = P * V1; V2 = MP * V2; V = V1 - V2; Clean(V,0.000000001); Print(V); RowVector XX(1); XX = LogDeterminant(P).Value() / LogDeterminant(MP).Value() - 1.0; Clean(XX,0.000000001); Print(XX); LowerBandMatrix LP(80,5); for (i=1; i<=80; i++) for (j=1; j<=80; j++) { int d = i-j; if (d<=5 && d>=0) LP(i,j) = i + j/100.0; } MP = LP; XX.ReSize(4); XX(1) = LogDeterminant(LP).Value(); XX(2) = LogDeterminant(MP).Value(); V1 = LP.i() * CX; V2 = MP.i() * CX; V = V1 - V2; Clean(V,0.000000001); Print(V); UpperBandMatrix UP(80,4); for (i=1; i<=80; i++) for (j=1; j<=80; j++) { int d = i-j; if (d<=0 && d>=-4) UP(i,j) = i + j/100.0; } MP = UP; XX(3) = LogDeterminant(UP).Value(); XX(4) = LogDeterminant(MP).Value(); V1 = UP.i() * CX; V2 = MP.i() * CX; V = V1 - V2; Clean(V,0.000000001); Print(V); XX = XX / SumAbsoluteValue(XX) - .25; Clean(XX,0.000000001); Print(XX); } { Tracer et1("Stage 3"); SymmetricBandMatrix SA(8,5); int i,j; for (i=1; i<=8; i++) for (j=1; j<=8; j++) if (i-j<=5 && 0<=i-j) SA(i,j) =i + j/128.0; DiagonalMatrix D(8); D = 10; SA = SA + D; Matrix MA1(8,8); Matrix MA2(8,8); for (i=1; i<=8; i++) { MA1.Column(i) << SA.Column(i); MA2.Row(i) << SA.Row(i); } Print(Matrix(MA1-MA2)); D = 10; SA = SA.t() + D; MA1 = MA1 + D; Print(Matrix(MA1-SA)); UpperBandMatrix UB(8,3); LowerBandMatrix LB(8,4); D << SA; UB << SA; LB << SA; SA = SA * 5.0; D = D * 5.0; LB = LB * 5.0; UB = UB * 5.0; BandMatrix B = LB - D + UB - SA; Print(Matrix(B)); SymmetricBandMatrix A(7,2); A = 100.0; for (i=1; i<=7; i++) for (j=1; j<=7; j++) { int k=i-j; if (k==0) A(i,j)=6; else if (k==1) A(i,j) = -4; else if (k==2) A(i,j) = 1; A(1,1) = A(7,7) = 5; } BandLUMatrix C(A); Matrix M = A; ColumnVector X(8); X(1) = LogDeterminant(C).Value() - 64; X(2) = LogDeterminant(A).Value() - 64; X(3) = LogDeterminant(M).Value() - 64; X(4) = SumSquare(M) - SumSquare(A); X(5) = SumAbsoluteValue(M) - SumAbsoluteValue(A); X(6) = MaximumAbsoluteValue(M) - MaximumAbsoluteValue(A); X(7) = Trace(M) - Trace(A); X(8) = Sum(M) - Sum(A); Clean(X,0.000000001); Print(X);#ifdef ATandT Real a[7]; a[0]=1; a[1]=2; a[2]=3; a[3]=4; a[4]=5; a[5]=6; a[6]=7;#else Real a[] = {1,2,3,4,5,6,7};#endif X.ReSize(7); X << a; X = M.i()*X - C.i()*X * 2 + A.i()*X; Clean(X,0.000000001); Print(X); LB << A; UB << A; D << A; BandMatrix XA = LB + (UB - D); Print(Matrix(XA - A)); for (i=1; i<=7; i++) for (j=1; j<=7; j++) { int k=i-j; if (k==0) A(i,j)=6; else if (k==1) A(i,j) = -4; else if (k==2) A(i,j) = 1; A(1,1) = A(7,7) = 5; } D = 1; M = LB.i() * LB - D; Clean(M,0.000000001); Print(M); M = UB.i() * UB - D; Clean(M,0.000000001); Print(M); M = XA.i() * XA - D; Clean(M,0.000000001); Print(M); Matrix MUB = UB; Matrix MLB = LB; M = LB.i() * UB - LB.i() * MUB; Clean(M,0.000000001); Print(M); M = UB.i() * LB - UB.i() * MLB; Clean(M,0.000000001); Print(M); M = LB.i() * UB - LB.i() * Matrix(UB); Clean(M,0.000000001); Print(M); M = UB.i() * LB - UB.i() * Matrix(LB); Clean(M,0.000000001); Print(M); } { // some tests about adding and subtracting band matrices of different // sizes - check bandwidth of results Tracer et1("Stage 4"); BandFunctions(9, 3, 9, 3); // equal BandFunctions(4, 7, 4, 7); // equal BandFunctions(9, 3, 5, 8); // neither < or > BandFunctions(5, 8, 9, 3); // neither < or > BandFunctions(9, 8, 5, 3); // > BandFunctions(3, 5, 8, 9); // < LowerBandFunctions(9, 9); // equal LowerBandFunctions(4, 4); // equal LowerBandFunctions(9, 5); // > LowerBandFunctions(3, 8); // < UpperBandFunctions(3, 3); // equal UpperBandFunctions(7, 7); // equal UpperBandFunctions(8, 3); // > UpperBandFunctions(5, 9); // < SymmetricBandFunctions(9, 9); // equal SymmetricBandFunctions(4, 4); // equal SymmetricBandFunctions(9, 5); // > SymmetricBandFunctions(3, 8); // < DiagonalMatrix D(6); D << 2 << 3 << 4.5 << 1.25 << 9.5 << -5; BandMatrix BD = D; UpperBandMatrix UBD; UBD = D; LowerBandMatrix LBD; LBD = D; SymmetricBandMatrix SBD = D; Matrix X = BD - D; Print(X); X = UBD - D; Print(X); X = LBD - D; Print(X); X = SBD - D; Print(X); Matrix Test(9,2); Test(1,1) = BD.BandWidth().Lower(); Test(1,2) = BD.BandWidth().Upper(); Test(2,1) = UBD.BandWidth().Lower(); Test(2,2) = UBD.BandWidth().Upper(); Test(3,1) = LBD.BandWidth().Lower(); Test(3,2) = LBD.BandWidth().Upper(); Test(4,1) = SBD.BandWidth().Lower(); Test(4,2) = SBD.BandWidth().Upper(); IdentityMatrix I(10); I *= 5; BD = I; UBD = I; LBD = I; SBD = I; X = BD - I; Print(X); X = UBD - I; Print(X); X = LBD - I; Print(X); X = SBD - I; Print(X); Test(5,1) = BD.BandWidth().Lower(); Test(5,2) = BD.BandWidth().Upper(); Test(6,1) = UBD.BandWidth().Lower(); Test(6,2) = UBD.BandWidth().Upper(); Test(7,1) = LBD.BandWidth().Lower(); Test(7,2) = LBD.BandWidth().Upper(); Test(8,1) = SBD.BandWidth().Lower(); Test(8,2) = SBD.BandWidth().Upper(); RowVector RV = D.AsRow(); I.ReSize(6); BandMatrix BI = I; I = 1; BD = RV.AsDiagonal() + BI; X = BD - D - I; Print(X); Test(9,1) = BD.BandWidth().Lower(); Test(9,2) = BD.BandWidth().Upper(); Print(Test); } { // various element functions Tracer et1("Stage 5"); int i, j; Matrix Count(1, 1); Count = 0; // for counting errors Matrix M(20,30); for (i = 1; i <= 20; ++i) for (j = 1; j <= 30; ++j) M(i, j) = 100 * i + j; const Matrix CM = M; for (i = 1; i <= 20; ++i) for (j = 1; j <= 30; ++j) { if (M(i, j) != CM(i, j)) ++Count(1,1); if (M(i, j) != CM.element(i-1, j-1)) ++Count(1,1); if (M(i, j) != M.element(i-1, j-1)) ++Count(1,1); } UpperTriangularMatrix U(20); for (i = 1; i <= 20; ++i) for (j = i; j <= 20; ++j) U(i, j) = 100 * i + j; const UpperTriangularMatrix CU = U; for (i = 1; i <= 20; ++i) for (j = i; j <= 20; ++j) { if (U(i, j) != CU(i, j)) ++Count(1,1); if (U(i, j) != CU.element(i-1, j-1)) ++Count(1,1); if (U(i, j) != U.element(i-1, j-1)) ++Count(1,1); } LowerTriangularMatrix L(20); for (i = 1; i <= 20; ++i) for (j = 1; j <= i; ++j) L(i, j) = 100 * i + j; const LowerTriangularMatrix CL = L; for (i = 1; i <= 20; ++i) for (j = 1; j <= i; ++j) { if (L(i, j) != CL(i, j)) ++Count(1,1); if (L(i, j) != CL.element(i-1, j-1)) ++Count(1,1); if (L(i, j) != L.element(i-1, j-1)) ++Count(1,1); } SymmetricMatrix S(20); for (i = 1; i <= 20; ++i) for (j = 1; j <= i; ++j) S(i, j) = 100 * i + j; const SymmetricMatrix CS = S; for (i = 1; i <= 20; ++i) for (j = 1; j <= 20; ++j) { if (S(i, j) != CS(i, j)) ++Count(1,1); if (S(i, j) != CS.element(i-1, j-1)) ++Count(1,1); if (S(i, j) != S.element(i-1, j-1)) ++Count(1,1); if (S(i, j) != S(j, i)) ++Count(1,1); if (S(i, j) != CS(i, j)) ++Count(1,1); if (S(i, j) != CS.element(i-1, j-1)) ++Count(1,1); if (S(i, j) != S.element(i-1, j-1)) ++Count(1,1); } DiagonalMatrix D(20); for (i = 1; i <= 20; ++i) D(i) = 100 * i + i * i; const DiagonalMatrix CD = D; for (i = 1; i <= 20; ++i) { if (D(i, i) != CD(i, i)) ++Count(1,1); if (D(i, i) != CD.element(i-1, i-1)) ++Count(1,1); if (D(i, i) != D.element(i-1, i-1)) ++Count(1,1); if (D(i, i) != D(i)) ++Count(1,1); if (D(i) != CD(i)) ++Count(1,1); if (D(i) != CD.element(i-1)) ++Count(1,1); if (D(i) != D.element(i-1)) ++Count(1,1); } RowVector R(20); for (i = 1; i <= 20; ++i) R(i) = 100 * i + i * i; const RowVector CR = R; for (i = 1; i <= 20; ++i) { if (R(i) != CR(i)) ++Count(1,1); if (R(i) != CR.element(i-1)) ++Count(1,1); if (R(i) != R.element(i-1)) ++Count(1,1); } ColumnVector C(20); for (i = 1; i <= 20; ++i) C(i) = 100 * i + i * i; const ColumnVector CC = C; for (i = 1; i <= 20; ++i) { if (C(i) != CC(i)) ++Count(1,1); if (C(i) != CC.element(i-1)) ++Count(1,1); if (C(i) != C.element(i-1)) ++Count(1,1); } Print(Count); } { // resize to another matrix size Tracer et1("Stage 6"); Matrix A(20, 30); A = 3; Matrix B(3, 4); B.ReSize(A); B = 6; B -= 2 * A; Print(B); A.ReSize(25,25); A = 12; UpperTriangularMatrix U(5); U.ReSize(A); U = 12; U << (U - A); Print(U); LowerTriangularMatrix L(5); L.ReSize(U); L = 12; L << (L - A); Print(L); DiagonalMatrix D(5); D.ReSize(U); D = 12; D << (D - A); Print(D); SymmetricMatrix S(5); S.ReSize(U); S = 12; S << (S - A); Print(S); IdentityMatrix I(5); I.ReSize(U); I = 12; D << (I - A); Print(D); A.ReSize(10, 1); A = 17; ColumnVector C(5); C.ReSize(A); C = 17; C -= A; Print(C); A.ReSize(1, 10); A = 15; RowVector R(5); R.ReSize(A); R = 15; R -= A; Print(R); } { // generic matrix and identity matrix Tracer et1("Stage 7"); IdentityMatrix I(5); I *= 4; GenericMatrix GM = I; GM /= 2; DiagonalMatrix D = GM; Matrix A = GM + 10; A -= 10; A -= D; Print(A); } { // SP and upper and lower triangular matrices Tracer et1("Stage 8"); UpperTriangularMatrix UT(4); UT << 3 << 7 << 3 << 9 << 5 << 2 << 6 << 8 << 0 << 4; LowerTriangularMatrix LT; LT.ReSize(UT); LT << 2 << 7 << 9 << 2 << 8 << 6 << 1 << 0 << 3 << 5; DiagonalMatrix D = SP(UT, LT); DiagonalMatrix D1(4); D1 << 6 << 45 << 48 << 20; D -= D1; Print(D); BandMatrix BM = SP(UT, LT); Matrix X = BM - D1; Print(X); RowVector RV(2); RV(1) = BM.BandWidth().Lower(); RV(2) = BM.BandWidth().Upper(); Print(RV); }// cout << "\nEnd of Seventeenth test\n";}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -