⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tmte.cpp

📁 matrix library for linux and windos
💻 CPP
📖 第 1 页 / 共 2 页
字号:
//#define WANT_STREAM#define WANT_MATH#include "include.h"#include "newmatap.h"//#include "newmatio.h"#include "tmt.h"#ifdef use_namespaceusing namespace NEWMAT;#endif// check D is sortedvoid CheckIsSorted(const DiagonalMatrix& D, bool ascending = false){   DiagonalMatrix D1 = D;   if (ascending) SortAscending(D1); else SortDescending(D1);   D1 -= D; Print(D1);}void trymate(){   Tracer et("Fourteenth test of Matrix package");   Tracer::PrintTrace();   {      Tracer et1("Stage 1");      Matrix A(8,5);      {#ifndef ATandT         Real   a[] = { 22, 10,  2,  3,  7,                        14,  7, 10,  0,  8,                        -1, 13, -1,-11,  3,		        -3, -2, 13, -2,  4,                         9,  8,  1, -2,  4,                         9,  1, -7,  5, -1,                         2, -6,  6,  5,  1,                         4,  5,  0, -2,  2 };#else         Real a[40];         a[ 0]=22; a[ 1]=10; a[ 2]= 2; a[ 3]= 3; a[ 4]= 7;         a[ 5]=14; a[ 6]= 7; a[ 7]=10; a[ 8]= 0; a[ 9]= 8;         a[10]=-1; a[11]=13; a[12]=-1; a[13]=-11;a[14]= 3;         a[15]=-3; a[16]=-2; a[17]=13; a[18]=-2; a[19]= 4;         a[20]= 9; a[21]= 8; a[22]= 1; a[23]=-2; a[24]= 4;         a[25]= 9; a[26]= 1; a[27]=-7; a[28]= 5; a[29]=-1;         a[30]= 2; a[31]=-6; a[32]= 6; a[33]= 5; a[34]= 1;         a[35]= 4; a[36]= 5; a[37]= 0; a[38]=-2; a[39]= 2;#endif         A << a;      }      DiagonalMatrix D; Matrix U; Matrix V;      int anc = A.Ncols(); IdentityMatrix I(anc);      SymmetricMatrix S1; S1 << A.t() * A;      SymmetricMatrix S2; S2 << A * A.t();      Real zero = 0.0; SVD(A+zero,D,U,V); CheckIsSorted(D);      DiagonalMatrix D1; SVD(A,D1); CheckIsSorted(D1);      D1 -= D; Clean(D1,0.000000001);Print(D1);      Matrix W;      SVD(A, D1, W, W, true, false); D1 -= D; W -= U;      Clean(W,0.000000001); Print(W); Clean(D1,0.000000001); Print(D1);      Matrix WX;      SVD(A, D1, WX, W, false, true); D1 -= D; W -= V;      Clean(W,0.000000001); Print(W); Clean(D1,0.000000001); Print(D1);      Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU);      Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV);      Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B);      D1=0.0;  SVD(A,D1,A); CheckIsSorted(D1);      A -= U; Clean(A,0.000000001); Print(A);      D(1) -= sqrt(1248.0); D(2) -= 20; D(3) -= sqrt(384.0);      Clean(D,0.000000001); Print(D);      Jacobi(S1, D, V);  CheckIsSorted(D, true);      V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V);      D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384;      Clean(D,0.000000001); Print(D);      Jacobi(S1, D);  CheckIsSorted(D, true);      D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384;      Clean(D,0.000000001); Print(D);      SymmetricMatrix JW(5);      Jacobi(S1, D, JW);  CheckIsSorted(D, true);      D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384;      Clean(D,0.000000001); Print(D);      Jacobi(S2, D, V);  CheckIsSorted(D, true);      V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V);      D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384;      Clean(D,0.000000001); Print(D);      EigenValues(S1, D, V); CheckIsSorted(D, true);      V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V);      D(5)-=1248; D(4)-=400; D(3)-=384;      Clean(D,0.000000001); Print(D);      EigenValues(S2, D, V); CheckIsSorted(D, true);      V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V);      D(8)-=1248; D(7)-=400; D(6)-=384;      Clean(D,0.000000001); Print(D);      EigenValues(S1, D); CheckIsSorted(D, true);      D(5)-=1248; D(4)-=400; D(3)-=384;      Clean(D,0.000000001); Print(D);      SymmetricMatrix EW(S2);      EigenValues(S2, D, EW); CheckIsSorted(D, true);      D(8)-=1248; D(7)-=400; D(6)-=384;      Clean(D,0.000000001); Print(D);   }   {      Tracer et1("Stage 2");      Matrix A(20,21);      int i,j;      for (i=1; i<=20; i++) for (j=1; j<=21; j++)      { if (i>j) A(i,j) = 0; else if (i==j) A(i,j) = 21-i; else A(i,j) = -1; }      A = A.t();      SymmetricMatrix S1; S1 << A.t() * A;      SymmetricMatrix S2; S2 << A * A.t();      DiagonalMatrix D; Matrix U; Matrix V;#ifdef ATandT      int anc = A.Ncols(); DiagonalMatrix I(anc);     // AT&T 2.1 bug#else      DiagonalMatrix I(A.Ncols());#endif      I=1.0;      SVD(A,D,U,V); CheckIsSorted(D);      Matrix SU = U.t() * U - I;    Clean(SU,0.000000001); Print(SU);      Matrix SV = V.t() * V - I;    Clean(SV,0.000000001); Print(SV);      Matrix B = U * D * V.t() - A; Clean(B,0.000000001);  Print(B);      for (i=1; i<=20; i++)  D(i) -= sqrt((22.0-i)*(21.0-i));      Clean(D,0.000000001); Print(D);      Jacobi(S1, D, V); CheckIsSorted(D, true);      V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V);      D = D.Reverse();      for (i=1; i<=20; i++)  D(i) -= (22-i)*(21-i);      Clean(D,0.000000001); Print(D);      Jacobi(S2, D, V); CheckIsSorted(D, true);      V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V);      D = D.Reverse();      for (i=1; i<=20; i++)  D(i) -= (22-i)*(21-i);      Clean(D,0.000000001); Print(D);      EigenValues(S1, D, V); CheckIsSorted(D, true);      V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V);      for (i=1; i<=20; i++)  D(i) -= (i+1)*i;      Clean(D,0.000000001); Print(D);      EigenValues(S2, D, V); CheckIsSorted(D, true);      V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V);      for (i=2; i<=21; i++)  D(i) -= (i-1)*i;      Clean(D,0.000000001); Print(D);      EigenValues(S1, D); CheckIsSorted(D, true);      for (i=1; i<=20; i++)  D(i) -= (i+1)*i;      Clean(D,0.000000001); Print(D);      EigenValues(S2, D); CheckIsSorted(D, true);      for (i=2; i<=21; i++)  D(i) -= (i-1)*i;      Clean(D,0.000000001); Print(D);   }   {      Tracer et1("Stage 3");      Matrix A(30,30);      int i,j;      for (i=1; i<=30; i++) for (j=1; j<=30; j++)      { if (i>j) A(i,j) = 0; else if (i==j) A(i,j) = 1; else A(i,j) = -1; }      Real d1 = A.LogDeterminant().Value();      DiagonalMatrix D; Matrix U; Matrix V;#ifdef ATandT      int anc = A.Ncols(); DiagonalMatrix I(anc);     // AT&T 2.1 bug#else      DiagonalMatrix I(A.Ncols());#endif      I=1.0;      SVD(A,D,U,V); CheckIsSorted(D);      Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU);      Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV);      Real d2 = D.LogDeterminant().Value();      Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B);      Real d3 = D.LogDeterminant().Value();      ColumnVector Test(3);      Test(1) = d1 - 1; Test(2) = d2 - 1; Test(3) = d3 - 1;      Clean(Test,0.00000001); Print(Test); // only 8 decimal figures      A.ReSize(2,2);      Real a = 1.5; Real b = 2; Real c = 2 * (a*a + b*b);      A << a << b << a << b;      I.ReSize(2); I=1;      SVD(A,D,U,V); CheckIsSorted(D);      SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU);      SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV);      B = U * D * V.t() - A; Clean(B,0.000000001); Print(B);      D = D*D; SortDescending(D);      DiagonalMatrix D50(2); D50 << c << 0; D = D - D50;      Clean(D,0.000000001);      Print(D);      A << a << a << b << b;      SVD(A,D,U,V); CheckIsSorted(D);      SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU);      SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV);      B = U * D * V.t() - A; Clean(B,0.000000001); Print(B);      D = D*D; SortDescending(D);      D = D - D50;      Clean(D,0.000000001);      Print(D);   }   {      Tracer et1("Stage 4");      // test for bug found by Olof Runborg,      // Department of Numerical Analysis and Computer Science (NADA),      // KTH, Stockholm      Matrix A(22,20);      A = 0;      int a=1;      A(a+0,a+2) = 1;     A(a+0,a+18) = -1;      A(a+1,a+9) = 1;     A(a+1,a+12) = -1;      A(a+2,a+11) = 1;    A(a+2,a+12) = -1;      A(a+3,a+10) = 1;    A(a+3,a+19) = -1;      A(a+4,a+16) = 1;    A(a+4,a+19) = -1;      A(a+5,a+17) = 1;    A(a+5,a+18) = -1;      A(a+6,a+10) = 1;    A(a+6,a+4) = -1;      A(a+7,a+3) = 1;     A(a+7,a+2) = -1;      A(a+8,a+14) = 1;    A(a+8,a+15) = -1;      A(a+9,a+13) = 1;    A(a+9,a+16) = -1;      A(a+10,a+8) = 1;    A(a+10,a+9) = -1;      A(a+11,a+1) = 1;    A(a+11,a+15) = -1;      A(a+12,a+16) = 1;   A(a+12,a+4) = -1;      A(a+13,a+6) = 1;    A(a+13,a+9) = -1;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -