📄 tmte.cpp
字号:
//#define WANT_STREAM#define WANT_MATH#include "include.h"#include "newmatap.h"//#include "newmatio.h"#include "tmt.h"#ifdef use_namespaceusing namespace NEWMAT;#endif// check D is sortedvoid CheckIsSorted(const DiagonalMatrix& D, bool ascending = false){ DiagonalMatrix D1 = D; if (ascending) SortAscending(D1); else SortDescending(D1); D1 -= D; Print(D1);}void trymate(){ Tracer et("Fourteenth test of Matrix package"); Tracer::PrintTrace(); { Tracer et1("Stage 1"); Matrix A(8,5); {#ifndef ATandT Real a[] = { 22, 10, 2, 3, 7, 14, 7, 10, 0, 8, -1, 13, -1,-11, 3, -3, -2, 13, -2, 4, 9, 8, 1, -2, 4, 9, 1, -7, 5, -1, 2, -6, 6, 5, 1, 4, 5, 0, -2, 2 };#else Real a[40]; a[ 0]=22; a[ 1]=10; a[ 2]= 2; a[ 3]= 3; a[ 4]= 7; a[ 5]=14; a[ 6]= 7; a[ 7]=10; a[ 8]= 0; a[ 9]= 8; a[10]=-1; a[11]=13; a[12]=-1; a[13]=-11;a[14]= 3; a[15]=-3; a[16]=-2; a[17]=13; a[18]=-2; a[19]= 4; a[20]= 9; a[21]= 8; a[22]= 1; a[23]=-2; a[24]= 4; a[25]= 9; a[26]= 1; a[27]=-7; a[28]= 5; a[29]=-1; a[30]= 2; a[31]=-6; a[32]= 6; a[33]= 5; a[34]= 1; a[35]= 4; a[36]= 5; a[37]= 0; a[38]=-2; a[39]= 2;#endif A << a; } DiagonalMatrix D; Matrix U; Matrix V; int anc = A.Ncols(); IdentityMatrix I(anc); SymmetricMatrix S1; S1 << A.t() * A; SymmetricMatrix S2; S2 << A * A.t(); Real zero = 0.0; SVD(A+zero,D,U,V); CheckIsSorted(D); DiagonalMatrix D1; SVD(A,D1); CheckIsSorted(D1); D1 -= D; Clean(D1,0.000000001);Print(D1); Matrix W; SVD(A, D1, W, W, true, false); D1 -= D; W -= U; Clean(W,0.000000001); Print(W); Clean(D1,0.000000001); Print(D1); Matrix WX; SVD(A, D1, WX, W, false, true); D1 -= D; W -= V; Clean(W,0.000000001); Print(W); Clean(D1,0.000000001); Print(D1); Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); D1=0.0; SVD(A,D1,A); CheckIsSorted(D1); A -= U; Clean(A,0.000000001); Print(A); D(1) -= sqrt(1248.0); D(2) -= 20; D(3) -= sqrt(384.0); Clean(D,0.000000001); Print(D); Jacobi(S1, D, V); CheckIsSorted(D, true); V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V); D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384; Clean(D,0.000000001); Print(D); Jacobi(S1, D); CheckIsSorted(D, true); D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384; Clean(D,0.000000001); Print(D); SymmetricMatrix JW(5); Jacobi(S1, D, JW); CheckIsSorted(D, true); D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384; Clean(D,0.000000001); Print(D); Jacobi(S2, D, V); CheckIsSorted(D, true); V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V); D = D.Reverse(); D(1)-=1248; D(2)-=400; D(3)-=384; Clean(D,0.000000001); Print(D); EigenValues(S1, D, V); CheckIsSorted(D, true); V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V); D(5)-=1248; D(4)-=400; D(3)-=384; Clean(D,0.000000001); Print(D); EigenValues(S2, D, V); CheckIsSorted(D, true); V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V); D(8)-=1248; D(7)-=400; D(6)-=384; Clean(D,0.000000001); Print(D); EigenValues(S1, D); CheckIsSorted(D, true); D(5)-=1248; D(4)-=400; D(3)-=384; Clean(D,0.000000001); Print(D); SymmetricMatrix EW(S2); EigenValues(S2, D, EW); CheckIsSorted(D, true); D(8)-=1248; D(7)-=400; D(6)-=384; Clean(D,0.000000001); Print(D); } { Tracer et1("Stage 2"); Matrix A(20,21); int i,j; for (i=1; i<=20; i++) for (j=1; j<=21; j++) { if (i>j) A(i,j) = 0; else if (i==j) A(i,j) = 21-i; else A(i,j) = -1; } A = A.t(); SymmetricMatrix S1; S1 << A.t() * A; SymmetricMatrix S2; S2 << A * A.t(); DiagonalMatrix D; Matrix U; Matrix V;#ifdef ATandT int anc = A.Ncols(); DiagonalMatrix I(anc); // AT&T 2.1 bug#else DiagonalMatrix I(A.Ncols());#endif I=1.0; SVD(A,D,U,V); CheckIsSorted(D); Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); for (i=1; i<=20; i++) D(i) -= sqrt((22.0-i)*(21.0-i)); Clean(D,0.000000001); Print(D); Jacobi(S1, D, V); CheckIsSorted(D, true); V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V); D = D.Reverse(); for (i=1; i<=20; i++) D(i) -= (22-i)*(21-i); Clean(D,0.000000001); Print(D); Jacobi(S2, D, V); CheckIsSorted(D, true); V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V); D = D.Reverse(); for (i=1; i<=20; i++) D(i) -= (22-i)*(21-i); Clean(D,0.000000001); Print(D); EigenValues(S1, D, V); CheckIsSorted(D, true); V = S1 - V * D * V.t(); Clean(V,0.000000001); Print(V); for (i=1; i<=20; i++) D(i) -= (i+1)*i; Clean(D,0.000000001); Print(D); EigenValues(S2, D, V); CheckIsSorted(D, true); V = S2 - V * D * V.t(); Clean(V,0.000000001); Print(V); for (i=2; i<=21; i++) D(i) -= (i-1)*i; Clean(D,0.000000001); Print(D); EigenValues(S1, D); CheckIsSorted(D, true); for (i=1; i<=20; i++) D(i) -= (i+1)*i; Clean(D,0.000000001); Print(D); EigenValues(S2, D); CheckIsSorted(D, true); for (i=2; i<=21; i++) D(i) -= (i-1)*i; Clean(D,0.000000001); Print(D); } { Tracer et1("Stage 3"); Matrix A(30,30); int i,j; for (i=1; i<=30; i++) for (j=1; j<=30; j++) { if (i>j) A(i,j) = 0; else if (i==j) A(i,j) = 1; else A(i,j) = -1; } Real d1 = A.LogDeterminant().Value(); DiagonalMatrix D; Matrix U; Matrix V;#ifdef ATandT int anc = A.Ncols(); DiagonalMatrix I(anc); // AT&T 2.1 bug#else DiagonalMatrix I(A.Ncols());#endif I=1.0; SVD(A,D,U,V); CheckIsSorted(D); Matrix SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); Matrix SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); Real d2 = D.LogDeterminant().Value(); Matrix B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); Real d3 = D.LogDeterminant().Value(); ColumnVector Test(3); Test(1) = d1 - 1; Test(2) = d2 - 1; Test(3) = d3 - 1; Clean(Test,0.00000001); Print(Test); // only 8 decimal figures A.ReSize(2,2); Real a = 1.5; Real b = 2; Real c = 2 * (a*a + b*b); A << a << b << a << b; I.ReSize(2); I=1; SVD(A,D,U,V); CheckIsSorted(D); SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); D = D*D; SortDescending(D); DiagonalMatrix D50(2); D50 << c << 0; D = D - D50; Clean(D,0.000000001); Print(D); A << a << a << b << b; SVD(A,D,U,V); CheckIsSorted(D); SU = U.t() * U - I; Clean(SU,0.000000001); Print(SU); SV = V.t() * V - I; Clean(SV,0.000000001); Print(SV); B = U * D * V.t() - A; Clean(B,0.000000001); Print(B); D = D*D; SortDescending(D); D = D - D50; Clean(D,0.000000001); Print(D); } { Tracer et1("Stage 4"); // test for bug found by Olof Runborg, // Department of Numerical Analysis and Computer Science (NADA), // KTH, Stockholm Matrix A(22,20); A = 0; int a=1; A(a+0,a+2) = 1; A(a+0,a+18) = -1; A(a+1,a+9) = 1; A(a+1,a+12) = -1; A(a+2,a+11) = 1; A(a+2,a+12) = -1; A(a+3,a+10) = 1; A(a+3,a+19) = -1; A(a+4,a+16) = 1; A(a+4,a+19) = -1; A(a+5,a+17) = 1; A(a+5,a+18) = -1; A(a+6,a+10) = 1; A(a+6,a+4) = -1; A(a+7,a+3) = 1; A(a+7,a+2) = -1; A(a+8,a+14) = 1; A(a+8,a+15) = -1; A(a+9,a+13) = 1; A(a+9,a+16) = -1; A(a+10,a+8) = 1; A(a+10,a+9) = -1; A(a+11,a+1) = 1; A(a+11,a+15) = -1; A(a+12,a+16) = 1; A(a+12,a+4) = -1; A(a+13,a+6) = 1; A(a+13,a+9) = -1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -