⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tmtm.cpp

📁 matrix library for linux and windos
💻 CPP
字号:
#define WANT_STREAM#define WANT_MATH#include "newmat.h"#include "tmt.h"#ifdef use_namespaceusing namespace NEWMAT;#endif// test Kronecker Productvoid trymatm(){   Tracer et("Twenty second test of Matrix package");   Tracer::PrintTrace();   {      Tracer et1("Stage 1");      Matrix A(2,3);      A << 3 << 5 << 2        << 4 << 1 << 6;      Matrix B(4,3);      B <<  7 <<  2 <<  9        <<  1 <<  3 <<  6        <<  4 << 10 <<  5        << 11 <<  8 << 12;      Matrix C(8, 9);      C.Row(1) << 21 <<  6 << 27  << 35 << 10 << 45  << 14 <<  4 << 18;      C.Row(2) <<  3 <<  9 << 18  <<  5 << 15 << 30  <<  2 <<  6 << 12;      C.Row(3) << 12 << 30 << 15  << 20 << 50 << 25  <<  8 << 20 << 10;      C.Row(4) << 33 << 24 << 36  << 55 << 40 << 60  << 22 << 16 << 24;      C.Row(5) << 28 <<  8 << 36  <<  7 <<  2 <<  9  << 42 << 12 << 54;      C.Row(6) <<  4 << 12 << 24  <<  1 <<  3 <<  6  <<  6 << 18 << 36;      C.Row(7) << 16 << 40 << 20  <<  4 << 10 <<  5  << 24 << 60 << 30;      C.Row(8) << 44 << 32 << 48  << 11 <<  8 << 12  << 66 << 48 << 72;      Matrix AB = KP(A,B) - C; Print(AB);      IdentityMatrix I1(10); IdentityMatrix I2(15); I2 *= 2;      DiagonalMatrix D = KP(I1, I2) - IdentityMatrix(150) * 2;      Print(D);   }   {      Tracer et1("Stage 2");      UpperTriangularMatrix A(3);      A << 3 << 8 << 5             << 7 << 2                  << 4;      UpperTriangularMatrix B(4);      B << 4 << 1 << 7 << 2             << 3 << 9 << 8                  << 1 << 5                       << 6;      UpperTriangularMatrix C(12);      C.Row(1) <<12<< 3<<21<< 6 <<32<< 8<<56<<16 <<20<< 5<<35<<10;      C.Row(2)     << 9<<27<<24 << 0<<24<<72<<64 << 0<<15<<45<<40;      C.Row(3)         << 3<<15 << 0<< 0<< 8<<40 << 0<< 0<< 5<<25;      C.Row(4)             <<18 << 0<< 0<< 0<<48 << 0<< 0<< 0<<30;      C.Row(5)                  <<28<< 7<<49<<14 << 8<< 2<<14<< 4;      C.Row(6)                      <<21<<63<<56 << 0<< 6<<18<<16;      C.Row(7)                          << 7<<35 << 0<< 0<< 2<<10;      C.Row(8)                              <<42 << 0<< 0<< 0<<12;      C.Row(9)                                   <<16<< 4<<28<< 8;      C.Row(10)                                      <<12<<36<<32;      C.Row(11)                                          << 4<<20;      C.Row(12)                                              <<24;      UpperTriangularMatrix AB = KP(A,B) - C; Print(AB);      LowerTriangularMatrix BT = B.t(); Matrix N(12,12);      N.Row(1) <<12 << 0<< 0<< 0 <<32<< 0<< 0<< 0 <<20<< 0<< 0<< 0;      N.Row(2) << 3 << 9<< 0<< 0 << 8<<24<< 0<< 0 << 5<<15<< 0<< 0;      N.Row(3) <<21 <<27<< 3<< 0 <<56<<72<< 8<< 0 <<35<<45<< 5<< 0;      N.Row(4) << 6 <<24<<15<<18 <<16<<64<<40<<48 <<10<<40<<25<<30;      N.Row(5) << 0 << 0<< 0<< 0 <<28<< 0<< 0<< 0 << 8<< 0<< 0<< 0;      N.Row(6) << 0 << 0<< 0<< 0 << 7<<21<< 0<< 0 << 2<< 6<< 0<< 0;      N.Row(7) << 0 << 0<< 0<< 0 <<49<<63<< 7<< 0 <<14<<18<< 2<< 0;      N.Row(8) << 0 << 0<< 0<< 0 <<14<<56<<35<<42 << 4<<16<<10<<12;      N.Row(9) << 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 <<16<< 0<< 0<< 0;      N.Row(10)<< 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 << 4<<12<< 0<< 0;      N.Row(11)<< 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 <<28<<36<< 4<< 0;      N.Row(12)<< 0 << 0<< 0<< 0 << 0<< 0<< 0<< 0 << 8<<32<<20<<24;      Matrix N1 = KP(A, BT); N1 -= N; Print(N1);      AB << KP(A, BT); AB << (AB - N); Print(AB);      BT << KP(A, BT); BT << (BT - N); Print(BT);      LowerTriangularMatrix AT = A.t();      N1 = KP(AT, B); N1 -= N.t(); Print(N1);      AB << KP(AT, B); AB << (AB - N.t()); Print(AB);      BT << KP(AT, B); BT << (BT - N.t()); Print(BT);   }   {      Tracer et1("Stage 3");      BandMatrix BMA(6,2,3);      BMA.Row(1) << 5.25 << 4.75 << 2.25 << 1.75;      BMA.Row(2) << 1.25 << 9.75 << 4.50 << 0.25 << 1.50;      BMA.Row(3) << 7.75 << 1.50 << 3.00 << 4.25 << 0.50 << 5.50;      BMA.Row(4) << 2.75 << 9.00 << 8.00 << 3.25 << 3.50;      BMA.Row(5) << 8.75 << 6.25 << 5.00 << 5.75;      BMA.Row(6) << 3.75 << 6.75 << 6.00;      Matrix A = BMA;      BandMatrix BMB(4,2,1);      BMB.Row(1) << 4.5 << 9.5;      BMB.Row(2) << 1.5 << 6.0 << 2.0;      BMB.Row(3) << 0.5 << 2.5 << 8.5 << 7.5;      BMB.Row(4) << 3.0 << 4.0 << 6.5;      Matrix B = BMB;      BandMatrix BMC = KP(BMA, BMB);      BandMatrix BMC1(24,11,15);      BMC1.Inject(Matrix(KP(BMA, B)));  // not directly Band Matrix      Matrix C2 = KP(A, BMB);      Matrix C = KP(A, B);      Matrix M = C - BMC; Print(M);      M = C - BMC1; Print(M);      M = C - C2; Print(M);      RowVector X(4);      X(1) = BMC.BandWidth().Lower() - 10;      X(2) = BMC.BandWidth().Upper() - 13;      X(3) = BMC1.BandWidth().Lower() - 11;      X(4) = BMC1.BandWidth().Upper() - 15;      Print(X);      UpperTriangularMatrix UT;  UT << KP(BMA, BMB);      UpperTriangularMatrix UT1; UT1 << (C - UT); Print(UT1);      LowerTriangularMatrix LT;  LT << KP(BMA, BMB);      LowerTriangularMatrix LT1; LT1 << (C - LT); Print(LT1);   }   {      Tracer et1("Stage 4");      SymmetricMatrix SM1(4);      SM1.Row(1) << 2;      SM1.Row(2) << 4 << 5;      SM1.Row(3) << 9 << 2 << 1;      SM1.Row(4) << 3 << 6 << 8 << 2;      SymmetricMatrix SM2(3);      SM2.Row(1) <<  3;      SM2.Row(2) << -7 << -6;      SM2.Row(3) <<  4 << -2 << -1;      SymmetricMatrix SM = KP(SM1, SM2);      Matrix M1 = SM1; Matrix M2 = SM2;      Matrix M = KP(SM1, SM2); M -= SM; Print(M);      M = KP(SM1, SM2) - SM; Print(M);      M = KP(M1, SM2) - SM; Print(M);      M = KP(SM1, M2) - SM; Print(M);      M = KP(M1, M2); M -= SM; Print(M);   }   {      Tracer et1("Stage 5");      Matrix A(2,3);      A << 3 << 5 << 2        << 4 << 1 << 6;      Matrix B(3,4);      B <<  7 <<  2 <<  9 << 11        <<  1 <<  3 <<  6 <<  8        <<  4 << 10 <<  5 << 12;      RowVector C(2); C << 3 << 7;      ColumnVector D(4); D << 0 << 5 << 13 << 11;      Matrix M = KP(C * A, B * D) - KP(C, B) * KP(A, D); Print(M);   }   {      Tracer et1("Stage 6");      RowVector A(3), B(5), C(15);      A << 5 << 2 << 4;      B << 3 << 2 << 0 << 1 << 6;      C << 15 << 10 << 0 << 5 << 30        <<  6 <<  4 << 0 << 2 << 12        << 12 <<  8 << 0 << 4 << 24;      Matrix N = KP(A, B) - C;    Print(N);      N = KP(A.t(), B.t()) - C.t();    Print(N);      N = KP(A.AsDiagonal(), B.AsDiagonal()) - C.AsDiagonal();    Print(N);   }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -