⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tmtf.cpp

📁 matrix library for linux and windos
💻 CPP
字号:
//#define WANT_STREAM#define WANT_MATH#include "include.h"#include "newmatap.h"//#include "newmatio.h"#include "tmt.h"#ifdef use_namespaceusing namespace NEWMAT;#endifstatic void SlowFT(const ColumnVector& a, const ColumnVector&b,   ColumnVector& x, ColumnVector& y){   int n = a.Nrows();   x.ReSize(n); y.ReSize(n);   Real f = 6.2831853071795864769/n;   for (int j=1; j<=n; j++)   {      Real sumx = 0.0; Real sumy = 0.0;      for (int k=1; k<=n; k++)      {	 Real theta = - (j-1) * (k-1) * f;	 Real c = cos(theta); Real s = sin(theta);	 sumx += c * a(k) - s * b(k); sumy += s * a(k) + c * b(k);      }      x(j) = sumx; y(j) = sumy;   }}static void SlowDTT_II(const ColumnVector& a, ColumnVector& c, ColumnVector& s){   int n = a.Nrows(); c.ReSize(n); s.ReSize(n);   Real f = 6.2831853071795864769 / (4*n);   int k;   for (k=1; k<=n; k++)   {      Real sum = 0.0;      const int k1 = k-1;              // otherwise Visual C++ 5 fails      for (int j=1; j<=n; j++) sum += cos(k1 * (2*j-1) * f) * a(j);      c(k) = sum;   }   for (k=1; k<=n; k++)   {      Real sum = 0.0;      for (int j=1; j<=n; j++) sum += sin(k * (2*j-1) * f) * a(j);      s(k) = sum;   }}static void SlowDTT(const ColumnVector& a, ColumnVector& c, ColumnVector& s){   int n1 = a.Nrows(); int n = n1 - 1;   c.ReSize(n1); s.ReSize(n1);   Real f = 6.2831853071795864769 / (2*n);   int k;   int sign = 1;   for (k=1; k<=n1; k++)   {      Real sum = 0.0;      for (int j=2; j<=n; j++) sum += cos((j-1) * (k-1) * f) * a(j);      c(k) = sum + (a(1) + sign * a(n1)) / 2.0;      sign = -sign;   }   for (k=2; k<=n; k++)   {      Real sum = 0.0;      for (int j=2; j<=n; j++) sum += sin((j-1) * (k-1) * f) * a(j);      s(k) = sum;   }   s(1) = s(n1) = 0;}static void test(int n){   Tracer et("Test FFT");   ColumnVector A(n), B(n), X, Y;   for (int i=0; i<n; i++)   {      Real f = 6.2831853071795864769*i/n;      A.element(i) = fabs(sin(7.0*f) + 0.5 * cos(19.0 * f)) + (Real)i/(Real)n;      B.element(i) = fabs(0.25 * cos(31.0 * f)) + (Real)i/(Real)n;   }   FFT(A, B, X, Y); FFTI(X, Y, X, Y);   X = X - A; Y = Y - B;   Clean(X,0.000000001); Clean(Y,0.000000001); Print(X); Print(Y);}static void test1(int n){   Tracer et("Test RealFFT");   ColumnVector A(n), B(n), X, Y;   for (int i=0; i<n; i++)   {      Real f = 6.2831853071795864769*i/n;      A.element(i) = fabs(sin(7.0*f) + 0.5 * cos(19.0 * f)) + (Real)i/(Real)n;   }   B = 0.0;   FFT(A, B, X, Y);   B.CleanUp();                 // release some space   int n2 = n/2+1;   ColumnVector X1,Y1,X2,Y2;   RealFFT(A, X1, Y1);   X2 = X1 - X.Rows(1,n2); Y2 = Y1 - Y.Rows(1,n2);   Clean(X2,0.000000001); Clean(Y2,0.000000001); Print(X2); Print(Y2);   X2.CleanUp(); Y2.CleanUp();  // release some more space   RealFFTI(X1,Y1,B);   B = A - B;   Clean(B,0.000000001); Print(B);}static void test2(int n){   Tracer et("cf FFT and slow FT");   ColumnVector A(n), B(n), X, Y, X1, Y1;   for (int i=0; i<n; i++)   {      Real f = 6.2831853071795864769*i/n;      A.element(i) = fabs(sin(7.0*f) - 0.5 * cos(19.0 * f)) + (Real)i/(Real)n;      B.element(i) = fabs(0.25 * cos(31.0 * f)) - (Real)i/(Real)n;   }   FFT(A, B, X, Y);   SlowFT(A, B, X1, Y1);   X = X - X1; Y = Y - Y1;   Clean(X,0.000000001); Clean(Y,0.000000001); Print(X); Print(Y);}static void test3(int n){   Tracer et("cf slow and fast DCT_II and DST_II");   ColumnVector A(n), X, Y, X1, Y1;   for (int i=0; i<n; i++)   {      Real f = 6.2831853071795864769*i/n;      A.element(i) = fabs(sin(7.0*f) - 0.55 * cos(19.0 * f)		  + .73 * sin(6.0 * f)) + (Real)i/(Real)n;   }   DCT_II(A, X); DST_II(A, Y);   SlowDTT_II(A, X1, Y1);   X -= X1; Y -= Y1;   Clean(X,0.000000001); Clean(Y,0.000000001); Print(X); Print(Y);}static void test4(int n){   Tracer et("Test DCT_II");   ColumnVector A1(n);   for (int i=0; i<n; i++)   {      Real f = 6.2831853071795864769*i/n;      A1.element(i) =         fabs(sin(7.0*f) + 0.7588 * cos(19.0 * f) + (Real)i/(Real)n);   }   // do DCT II by ordinary FFT   ColumnVector P(2*n), Q(2*n);   P = 0.0; Q = 0.0; P.Rows(1,n) = A1;   FFT(P, Q, P, Q);   ColumnVector B1(n);   for (int k=0; k<n; k++)   {      Real arg = k * 6.2831853071795864769 / (4 * n);      B1(k+1) = P(k+1) * cos(arg) + Q(k+1) * sin(arg);   }   // use DCT_II routine   ColumnVector B2;   DCT_II(A1,B2);   // test inverse   ColumnVector A2;   DCT_II_inverse(B2,A2);   A1 -= A2; B1 -= B2;   Clean(A1,0.000000001); Clean(B1,0.000000001); Print(A1); Print(B1);}static void test5(int n){   Tracer et("Test DST_II");   ColumnVector A1(n);   for (int i=0; i<n; i++)   {      Real f = 6.2831853071795864769*i/n;      A1.element(i) =         fabs(sin(11.0*f) + 0.7588 * cos(19.0 * f) + (Real)i/(Real)n);   }   // do DST II by ordinary FFT   ColumnVector P(2*n), Q(2*n);   P = 0.0; Q = 0.0; P.Rows(1,n) = A1;   FFT(P, Q, P, Q);   ColumnVector B1(n);   for (int k=1; k<=n; k++)   {      Real arg = k * 6.2831853071795864769 / (4 * n);      B1(k) = P(k+1) * sin(arg) - Q(k+1) * cos(arg);   }   // use DST_II routine   ColumnVector B2;   DST_II(A1,B2);   // test inverse   ColumnVector A2;   DST_II_inverse(B2,A2);   A1 -= A2; B1 -= B2;   Clean(A1,0.000000001); Clean(B1,0.000000001); Print(A1); Print(B1);}static void test6(int n){   Tracer et("Test DST");   ColumnVector A1(n+1);   A1(1) = A1(n+1) = 0;   for (int i=1; i<n; i++)   {      Real f = 6.2831853071795864769*i/n;      A1.element(i) =         fabs(sin(11.0*f) + 0.7588 * cos(19.0 * f) + (Real)i/(Real)n);   }   // do DST by ordinary FFT   ColumnVector P(2*n), Q(2*n); P = 0.0; Q = 0.0; P.Rows(1,n+1) = A1;   FFT(P, Q, P, Q);   ColumnVector B1 = -Q.Rows(1,n+1);   // use DST routine   ColumnVector B2;   DST(A1,B2);   // test inverse   ColumnVector A2;   DST_inverse(B2,A2);   A1 -= A2; B1 -= B2;   Clean(A1,0.000000001); Clean(B1,0.000000001); Print(A1); Print(B1);}static void test7(int n){   Tracer et("Test DCT");   ColumnVector A1(n+1);   for (int i=0; i<=n; i++)   {      Real f = 6.2831853071795864769*i/n;      A1.element(i) =         fabs(sin(17.0*f) + 0.6399 * cos(23.0 * f) + 1.32*(Real)i/(Real)n);   }   // do DCT by ordinary FFT   ColumnVector P(2*n), Q(2*n); P = 0.0; Q = 0.0; P.Rows(1,n+1) = A1;   P(1) /= 2.0; P(n+1) /= 2.0;   FFT(P, Q, P, Q);   ColumnVector B1 = P.Rows(1,n+1);   // use DCT routine   ColumnVector B2;   DCT(A1,B2);   // test inverse   ColumnVector A2;   DCT_inverse(B2,A2);   A1 -= A2; B1 -= B2;   Clean(A1,0.000000001); Clean(B1,0.000000001); Print(A1); Print(B1);}static void test8(int n){   Tracer et("cf slow and fast DCT and DST");   ColumnVector A(n+1), X, Y, X1, Y1;   for (int i=0; i<=n; i++)   {      Real f = 6.2831853071795864769*i/n;      A.element(i) = fabs(sin(7.0*f) - 0.5 * cos(19.0 * f) +         0.3 * (Real)i/(Real)n);   }   DCT(A, X); DST(A, Y);   SlowDTT(A, X1, Y1);   X -= X1; Y -= Y1;   Clean(X,0.000000001); Clean(Y,0.000000001); Print(X); Print(Y);}void trymatf(){   Tracer et("Fifteenth test of Matrix package");   Tracer::PrintTrace();   int i;   ColumnVector A(12), B(12);   for (i = 1; i <=12; i++)   {      Real i1 = i - 1;      A(i) = .7	   + .2 * cos(6.2831853071795864769 * 4.0 * i1 / 12)	   + .3 * sin(6.2831853071795864769 * 3.0 * i1 / 12);      B(i) = .9	   + .5 * sin(6.2831853071795864769 * 2.0 * i1 / 12)	   + .4 * cos(6.2831853071795864769 * 1.0 * i1 / 12);   }   FFT(A, B, A, B);   A(1) -= 8.4; A(3) -= 3.0; A(5) -= 1.2; A(9) -= 1.2; A(11) += 3.0;   B(1) -= 10.8; B(2) -= 2.4; B(4) += 1.8; B(10) -= 1.8; B(12) -= 2.4;   Clean(A,0.000000001); Clean(B,0.000000001); Print(A); Print(B);   // test FFT   test(2048); test(2000); test(27*81); test(2310); test(49*49);   test(13*13*13); test(43*47);   test(16*16*3); test(16*16*5); test(16*16*7);   test(8*8*5);   // test realFFT   test1(2); test1(98); test1(22); test1(100);   test1(2048); test1(2000); test1(35*35*2);   // compare FFT and slowFFT   test2(1); test2(13); test2(12); test2(9); test2(16); test2(30); test2(42);   test2(24); test2(8); test2(40); test2(48); test2(4); test2(3); test2(5);   test2(32); test2(2);   // compare DCT_II, DST_II and slow versions   test3(2); test3(26); test3(32); test3(18);   // test DCT_II and DST_II   test4(2); test5(2);   test4(202); test5(202);   test4(1000); test5(1000);   // test DST and DCT   test6(2); test7(2);   test6(274); test7(274);   test6(1000); test7(1000);   // compare DCT, DST and slow versions   test8(2); test8(26); test8(32); test8(18);   // now do the same thing all over again forcing use of old FFT   FFT_Controller::OnlyOldFFT = true;   for (i = 1; i <=12; i++)   {      Real i1 = i - 1;      A(i) = .7	   + .2 * cos(6.2831853071795864769 * 4.0 * i1 / 12)	   + .3 * sin(6.2831853071795864769 * 3.0 * i1 / 12);      B(i) = .9	   + .5 * sin(6.2831853071795864769 * 2.0 * i1 / 12)	   + .4 * cos(6.2831853071795864769 * 1.0 * i1 / 12);   }   FFT(A, B, A, B);   A(1) -= 8.4; A(3) -= 3.0; A(5) -= 1.2; A(9) -= 1.2; A(11) += 3.0;   B(1) -= 10.8; B(2) -= 2.4; B(4) += 1.8; B(10) -= 1.8; B(12) -= 2.4;   Clean(A,0.000000001); Clean(B,0.000000001); Print(A); Print(B);   // test FFT   test(2048); test(2000); test(27*81); test(2310); test(49*49);   test(13*13*13); test(43*47);   test(16*16*3); test(16*16*5); test(16*16*7);   test(8*8*5);   // test realFFT   test1(2); test1(98); test1(22); test1(100);   test1(2048); test1(2000); test1(35*35*2);   // compare FFT and slowFFT   test2(1); test2(13); test2(12); test2(9); test2(16); test2(30); test2(42);   test2(24); test2(8); test2(40); test2(48); test2(4); test2(3); test2(5);   test2(32); test2(2);   // compare DCT_II, DST_II and slow versions   test3(2); test3(26); test3(32); test3(18);   // test DCT_II and DST_II   test4(2); test5(2);   test4(202); test5(202);   test4(1000); test5(1000);   // test DST and DCT   test6(2); test7(2);   test6(274); test7(274);   test6(1000); test7(1000);   // compare DCT, DST and slow versions   test8(2); test8(26); test8(32); test8(18);   FFT_Controller::OnlyOldFFT = false;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -