⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gethmmlikeforu.m

📁 Continuous Profile Models (CPM) Matlab Toolbox.
💻 M
字号:
function [hmmLikeForZU uMat]= getHMMlikeForU(u,G,scalesExpRep,...    gammaSum5,gammaSum6,zPhi,sig2inv,binNum);% helper function to calculate the HMM portion of the expected complete LOG% likelihood.  two terms drop out 1) normalization constant of the% gaussian, and 2) the x-related term in the quadratic expansion%% % used only for u updates, as z updates has a more efficient version%% note too it is only doing it for 1 bin, (the input params should only be% given for this bin%% called by z2Function, and uFunction%% sig2inv = G.sigmas(binNum,:).^(-2);%% if want it for kk only, then specify which kk%if ~exist('kk')%    kk = 1:G.numSamples;%enduMat=0;% zRep = zeros(G.numSamples,G.numStates);% for cc=1:G.numClass%   classInd = G.class{cc};%   numInClass = length(classInd);%   zTauS = z(G.stateToScaleTau(:,2),cc);%   zRep(classInd,:)=repmat(zTauS,[1 numInClass])';% end% zPhi = scalesExpRep.*zRep;%zPhi = squeeze(zPhi(kk,:));if G.USE_CPM2        uMat = getUMat(G,u); %% need to call this each time    %uMat = squeeze(uMat(:,:));        uMat2 = uMat.^2;       %% remember, this is just for one bin    term1 = sum(sig2inv.*sum(uMat.*zPhi.*gammaSum6,2)');    term2 = sum(sig2inv.*sum(uMat2.*zPhi.^2.*gammaSum5,2)')/2;else           term1 = sum(u.*sig2inv.*sum(zPhi.*gammaSum6,2)');    term2 = sum(u.^2.*sig2inv.*sum(zPhi.^2.*gammaSum5,2)')/2;endhmmLikeForZU = term1 - term2;return;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -