📄 compareblur.m
字号:
function [totalScores AUC]=compareBlur(dat,tryTime,tryMz,timeBlur2,mzBlur2,... computeROC);%% see how different blurring to correct for residual misalignment%% affects the TVD score, and the AUC, using timeBlur2 and mzBlur2%% amount of blurring on the t-testnumT = length(tryTime);numM = length(tryMz);numClass=2; ind{1}=1:7; ind{2}=8:14;numRep=7;for tt=1:length(tryTime) for mm=1:length(tryMz) timeBlur = tryTime(tt); mzBlur = tryMz(mm); str=['Blurring: mz=' num2str(mzBlur) ', time=' num2str(timeBlur)]; disp(str); %% blur the data, then take one at a time %% as the 'anchor' which predicts [blurMat timeVec mzVec] = getBlurMat(timeBlur,mzBlur,0); global datB; datB = blurQmz(dat,timeVec,mzVec); for cc=1:numClass tmpScores = zeros(numRep,numRep-1); thisClassInd = ind{cc}; for anch=1:numRep anchInd = thisClassInd(anch); otherInd = setdiff(thisClassInd,anchInd); for jj=1:length(otherInd) thisInd = otherInd(jj); tmpScores(anch,jj) = scoreBlur(... datB(:,:,anchInd),... dat{thisInd}); end end classScore(tt,mm,cc) = sum(tmpScores(:)); end if computeROC [recall{tt,mm} precision{tt,mm} AUC(tt,mm)] = ... getECCBprecisionRecall('',timeBlur2,mzBlur2); else AUC=0; end if 0 %% plot the precision/recall curve: figure, hold on; plot(recall{tt,mm},precision{tt,mm},'k^--'); title(['Precision/Recall Curve - ' fNameShort{f}]); ylabel('Precision'); xlabel('Recall'); axis([0 1 0 1]); grid on; hold on; end endend%% sum out the classestotalScores = sum(classScore,3);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -