📄 enoca.m
字号:
function X = enoca(X,Level,Degree,Dim)
%ENOCA Essentially Non-Oscillatory cell-average decomposition.
% Y = ENOCA(X,L,N) computes the L-stage Essentially Non-Oscillatory
% (ENO) decomposition of signal X using cell-average discretization
% and Nth-degree interpolation. The signal length must be divisible
% by 2^L.
%
% ENOCA(X,-L,N) is the inverse transform, reversing L levels.
%
% ENOCA(X,L,N,DIM) applies the transform across the dimension DIM.
%
% Example:
% % Transform with 3 stages and 5th-degree interpolation
% Y = enoca(X,3,5); % Decompose X
% R = enoca(Y,-3,5); % Recover X from Y
%
% Reference:
% [1] F. Arandiga and R. Donat. ``Nonlinear Multiscale
% Decompositions: The Approach of A. Harten.'' Numerical
% Algorithms 23 (2000) 175-216.
%
% See also ENOPV, ENOCA2, ENOINT.
% Pascal Getreuer 2005
if nargin < 3, error('Not enough input arguments.'); end
if nargin < 4, Dim = min(find(size(X) ~= 1)); end
XSize = size(X);
N = XSize(Dim);
Perm = [Dim:max(length(XSize),Dim) 1:Dim-1];
X = reshape(permute(X,Perm),N,prod(XSize)/N);
if rem(N,pow2(abs(Level))), error('Invalid input size.'); end
if Level > 0
for k = 1:Level
N = size(X,1)*pow2(1-k);
A = (X(1:2:N,:) + X(2:2:N,:))/2;
P = diff(enoint(filter(2,[1,-1],[zeros(1,size(X,2));A],[],1),Degree),1);
X(1:N,:) = [A;X(2:2:N,:) - P(2:2:N,:)];
end
else
for k = Level:-1
N = size(X,1)*pow2(1+k);
P = diff(enoint(filter(2,[1,-1],[zeros(1,size(X,2));X(1:N/2,:)],[],1),Degree),1);
X([1:2:N,2:2:N],:) = P([1:2:N,2:2:N],:) + [-X(N/2+1:N,:);X(N/2+1:N,:)];
end
end
X = ipermute(reshape(X,XSize(Perm)),Perm);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -