📄 linbwt.m
字号:
function X = linbwt(X, Level, Dim)
%LINBWT Linear binary wavelet transform.
% Y = LINBWT(X,L) computes the L level decomposition of a signal X
% using a linear binary wavelet transform [1]. The signal length
% must be divisible by 2^L. If X is a matrix, the transform is
% applied to each column.
%
% LINBWT(X,-L) is the inverse transform, reversing L levels.
%
% LINBWT(X,L,DIM) applies the transform across the dimension DIM.
%
% Example:
% Y = linbwt(X,3); % Perform 3 levels of decomposition on X
% R = linbwt(Y,-3); % Recover X from Y
%
% Reference:
% [1] M. Swanson and A. Tewfik. ``A Binary Wavelet Decomposition of
% Binary Images.'' IEEE Transactions on Image Processing, Vol. 5,
% No. 12, Dec. 1996.
%
% See also LINBWT2, MORPHBWT2.
% Pascal Getreuer 2005
if nargin < 2, error('Not enough input arguments.'); end
if nargin < 3, Dim = min(find(size(X) ~= 1)); end
XSize = size(X);
N = XSize(Dim);
Perm = [Dim:max(length(XSize),Dim) 1:Dim-1];
X = reshape(permute(X,Perm),N,prod(XSize)/N);
if rem(N,pow2(abs(Level))), error('Invalid input size.'); end
if Level > 0
for k = 1:Level
N = size(X,1).*pow2(1-k);
s = filter([1,1,1],1,X([2:N,1],:),[1,1;1,0]*X([1,N],:),1);
d = filter([1,1],1,X([2:N,1],:),X(1,:),1);
X(1:N,:) = bitand([s(1:2:N,:);d(1:2:N,:)],1);
end
elseif Level < 0
for k = Level:-1
N = size(X,1)*pow2(k+1);
s(2:2:N,:) = X(1:N/2,:);
d(2:2:N,:) = X(N/2+1:N,:);
X(1:N,:) = bitand(filter([1,1],1,s([min(4,N):N,1:min(3,N-1)],:),s(min(3,N-1),:),1) ...
+ filter([1,1,1],1,d([min(4,N):N,1:min(3,N-1)],:),[1,1;1,0]*d([min(3,N-1),2],:),1),1);
end
end
X = ipermute(reshape(X,XSize(Perm)),Perm);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -