⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 melfcc.m

📁 use the matlab tool to do the mel analysis in the audio fingerprinting system.
💻 M
字号:
function [cepstra,aspectrum,pspectrum] = melfcc(samples, sr, varargin)%[cepstra,aspectrum,pspectrum] = melfcc(samples, sr[, opts ...])%  Calculate Mel-frequency cepstral coefficients by:%   - take the absolute value of the STFT%   - warp to a Mel frequency scale%   - take the DCT of the log-Mel-spectrum%   - return the first <ncep> components%  This version allows a lot of options to be controlled, as optional %  'name', value pairs from the 3rd argument on: (defaults in parens)%    'wintime' (0.025): window length in sec%    'hoptime' (0.010): step between successive windows in sec%    'numcep'     (13): number of cepstra to return%    'lifterexp' (0.6): exponent for liftering; 0 = none; < 0 = HTK sin lifter%    'sumpower'    (1): 1 = sum abs(fft)^2; 0 = sum abs(fft)%    'preemph'  (0.97): apply pre-emphasis filter [1 -preemph] (0 = none)%    'dither'      (0): 1 = add offset to spectrum as if dither noise%    'minfreq'     (0): lowest band edge of mel filters (Hz)%    'maxfreq'  (4000): highest band edge of mel filters (Hz)%    'nbands'     (40): number of warped spectral bands to use%    'bwidth'    (1.0): width of aud spec filters relative to default%    'dcttype'     (2): type of DCT used - 1 or 2 (or 3 for HTK or 4 for feac)%    'fbtype'  ('mel'): frequency warp: 'mel','bark','htkmel','fcmel'%    'usecmp'      (0): apply equal-loudness weighting and cube-root compr.%    'modelorder'  (0): if > 0, fit a PLP model of this order% The following non-default values nearly duplicate Malcolm Slaney's mfcc% (i.e. melfcc(d,16000,opts...) =~= log(10)*2*mfcc(d*(2^17),16000) )%       'wintime': 0.016%     'lifterexp': 0%       'minfreq': 133.33%       'maxfreq': 6855.6%      'sumpower': 0% The following non-default values nearly duplicate HTK's MFCC% (i.e. melfcc(d,16000,opts...) =~= 2*htkmelfcc(:,[13,[1:12]])'%  where HTK config has PREEMCOEF = 0.97, NUMCHANS = 20, CEPLIFTER = 22, %  NUMCEPS = 12, WINDOWSIZE = 250000.0, USEHAMMING = T, TARGETKIND = MFCC_0)%     'lifterexp': -22%        'nbands': 20%       'maxfreq': 8000%      'sumpower': 0%        'fbtype': 'htkmel'%       'dcttype': 3% For more detail on reproducing other programs' outputs, see% http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/mfccs.html%% 2005-04-19 dpwe@ee.columbia.edu after rastaplp.m.  % Uses Mark Paskin's process_options.m from KPMtoolsif nargin < 2;   sr = 16000;    end% Parse out the optional arguments[wintime, hoptime, numcep, lifterexp, sumpower, preemph, dither, ... minfreq, maxfreq, nbands, bwidth, dcttype, fbtype, usecmp, modelorder] = ...    process_options(varargin, 'wintime', 0.025, 'hoptime', 0.010, ...          'numcep', 13, 'lifterexp', 0.6, 'sumpower', 1, 'preemph', 0.97, ...	  'dither', 0, 'minfreq', 0, 'maxfreq', 4000, ...	  'nbands', 40, 'bwidth', 1.0, 'dcttype', 2, ...	  'fbtype', 'mel', 'usecmp', 0, 'modelorder', 0);if preemph ~= 0  samples = filter([1 -preemph], 1, samples);end% Compute FFT power spectrumpspectrum = powspec(samples, sr, wintime, hoptime, dither);aspectrum = audspec(pspectrum, sr, nbands, fbtype, minfreq, maxfreq, sumpower, bwidth);if (usecmp)  % PLP-like weighting/compression  aspectrum = postaud(aspectrum, maxfreq, fbtype);endif modelorder > 0  if (dcttype ~= 1)     disp(['warning: plp cepstra are implicitly dcttype 1 (not ', num2str(dcttype), ')']);  end    % LPC analysis   lpcas = dolpc(aspectrum, modelorder);  % convert lpc to cepstra  cepstra = lpc2cep(lpcas, numcep);  % Return the auditory spectrum corresponding to the cepstra?%  aspectrum = lpc2spec(lpcas, nbands);  % else return the aspectrum that the cepstra are based on, prior to PLPelse    % Convert to cepstra via DCT  cepstra = spec2cep(aspectrum, numcep, dcttype);endcepstra = lifter(cepstra, lifterexp);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -