📄 fmincopf.m
字号:
function [busout, genout, branchout, f, success, info, et, g, jac] = ... fmincopf(baseMVA, bus, gen, branch, areas, gencost, Au, lbu, ubu, mpopt)%FMINCOPF Solves an AC optimal power flow using FMINCON (Opt Tbx 2.x & later).%% [bus, gen, branch, f, success] = fmincopf(casefile, mpopt)%% [bus, gen, branch, f, success] = fmincopf(casefile, A, l, u, mpopt)%% [bus, gen, branch, f, success] = fmincopf(baseMVA, bus, gen, branch,...% areas, gencost, mpopt)%% [bus, gen, branch, f, success] = fmincopf(baseMVA, bus, gen, branch,...% areas, gencost, A, l, u, mpopt)%% [bus, gen, branch, f, success, info, et, g, jac] = fmincopf(casefile)%% The data for the problem can be specified in one of 3 ways: (1) the name of% a case file which defines the data matrices baseMVA, bus, gen, branch,% areas and gencost, (2) a struct containing the data matrices as fields, or% (3) the data matrices themselves.%% When specified, A, l, u represent additional linear constraints on the% optimization variables, l <= A*x <= u. For an explanation of the% formulation used and instructions for forming the A matrix, type% 'help genform'.%% The optional mpopt vector specifies MATPOWER options. Type 'help mpoption'% for details and default values.%% The solved case is returned in the data matrices, bus, gen and branch. Also,% returned are the final objective function value (f) and a flag which is% true if the algorithm was successful in finding a solution (success).% Additional optional return values are an algorithm specific return status% (info), elapsed time in seconds (et), the constraint vector (g) and the% Jacobian matrix (jac).% % Rules for A matrix: If the user specifies an A matrix that has more columns% than the combined number of "x" (OPF) and "y" (pwl cost) variables, thus% allowing for extra linearly costed and linearly constrained "z" variables,% then it is the user's responsibility to fill the overall linear cost in the% last row of A, including that reflected in the "y" variables.%% NOTE: The shadow prices (lambda's and mu's) produced by fmincon appear to% be slightly inaccurate.% MATPOWER% $Id: fmincopf.m,v 1.9 2005/01/25 14:39:46 ray Exp $% by Carlos E. Murillo-Sanchez, PSERC Cornell & Universidad Autonoma de Manizales% Copyright (c) 2000-2005 by Power System Engineering Research Center (PSERC)% See http://www.pserc.cornell.edu/matpower/ for more info.% Sort out input argumentst1 = clock;if isstr(baseMVA) | isstruct(baseMVA) casefile = baseMVA; if nargin == 5 Au = bus; lbu = gen; ubu = branch; mpopt = areas; elseif nargin == 4 Au = bus; lbu = gen; ubu = branch; mpopt = mpoption; elseif nargin == 2 Au = sparse(0,0); lbu = []; ubu = []; mpopt = bus; elseif nargin == 1 Au = sparse(0,0); lbu = []; ubu = []; mpopt = mpoption; else error('fmincopf.m: Incorrect input parameter order, number or type'); end; [baseMVA, bus, gen, branch, areas, gencost] = loadcase(casefile);else if nargin == 9 mpopt = mpoption; elseif nargin == 7 mpopt = Au; Au = sparse(0,0); lbu = []; ubu = []; elseif nargin == 6 mpopt = mpoption; Au = sparse(0,0); lbu = []; ubu = []; elseif nargin ~= 10 error('fmincopf.m: Incorrect input parameter order, number or type'); endend% Load column indexes for case tables.[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ... VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, ... RATE_C, TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST] = idx_brch;[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, ... GEN_STATUS, PMAX, PMIN, MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN] = idx_gen;[PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost;% If tables do not have multiplier/extra columns, append zero colsif size(bus,2) < MU_VMIN bus = [bus zeros(size(bus,1),MU_VMIN-size(bus,2)) ];endif size(gen,2) < MU_QMIN gen = [ gen zeros(size(gen,1),MU_QMIN-size(gen,2)) ];endif size(branch,2) < MU_ST branch = [ branch zeros(size(branch,1),MU_ST-size(branch,2)) ];end% Filter out inactive generators and branches; save original bus & branchcomgen = find(gen(:,GEN_STATUS) > 0);offgen = find(gen(:,GEN_STATUS) <= 0);onbranch = find(branch(:,BR_STATUS) ~= 0);offbranch = find(branch(:,BR_STATUS) == 0);genorg = gen;branchorg = branch;ng = size(gen,1); % original size(gen), at least temporallygen = gen(comgen, :);branch = branch(onbranch, :);if size(gencost,1) == ng gencost = gencost(comgen, :);else gencost = gencost( [comgen; comgen+ng], :);end% Renumber buses consecutively[i2e, bus, gen, branch, areas] = ext2int(bus, gen, branch, areas);[ref, pv, pq] = bustypes(bus, gen);% Sort generators in order of increasing bus number;ng = size(gen,1);[tmp, igen] = sort(gen(:, GEN_BUS));[tmp, inv_gen_ord] = sort(igen); % save for inverse reordering at the endgen = gen(igen, :);if ng == size(gencost,1) gencost = gencost(igen, :);else gencost = gencost( [igen; igen+ng], :);end% Find out if any of these "generators" are actually dispatchable loads.% (see 'help isload' for details on what consitutes a dispatchable load)% Dispatchable loads are modeled as generators with an added constant% power factor constraint. The power factor is derived from the original% value of Pmin and either Qmin (for inductive loads) or Qmax (for capacitive% loads). If both Qmin and Qmax are zero, this implies a unity power factor% without the need for an additional constraint.vload = find( isload(gen) & (gen(:, QMIN) ~= 0 | gen(:, QMAX) ~= 0) );% At least one of the Q limits must be zero (corresponding to Pmax == 0)if any( gen(vload, QMIN) ~= 0 & gen(vload, QMAX) ~= 0 ) error('Either Qmin or Qmax must be equal to zero for each dispatchable load.');end% Initial values of PG and QG must be consistent with specified power factor% This is to prevent a user from unknowingly using a case file which would% have defined a different power factor constraint under a previous version% which used PG and QG to define the power factor.Qlim = (gen(vload, QMIN) == 0) .* gen(vload, QMAX) + ... (gen(vload, QMAX) == 0) .* gen(vload, QMIN);if any( abs( gen(vload, QG) - gen(vload, PG) .* Qlim ./ gen(vload, PMIN) ) > 1e-4 ) errstr = sprintf('%s\n', ... 'For a dispatchable load, PG and QG must be consistent', ... 'with the power factor defined by PMIN and the Q limits.' ); error(errstr);end% Find out problem dimensionsnb = size(bus, 1); % busesng = size(gen, 1); % variable injectionsnl = size(branch, 1); % branchesiycost = find(gencost(:, MODEL) == PW_LINEAR); % y variables for pwl costny = size(iycost, 1);neqc = 2 * nb; % nonlinear equalitiesnx = 2*nb + 2*ng; % control variablesnvl = size(vload, 1); % dispatchable loadsnz = size(Au,2) - 2*nb - 2*ng - ny; % number of extra z variablesnz = max(nz,0);% Definition of indexes into optimization variable vector and constraint % vector.thbas = 1; thend = thbas+nb-1;vbas = thend+1; vend = vbas+nb-1;pgbas = vend+1; pgend = pgbas+ng-1;qgbas = pgend+1; qgend = qgbas+ng-1;ybas = qgend + 1; yend = ybas + ny - 1;zbas = yend + 1; zend = zbas + nz - 1;pmsmbas = 1; pmsmend = pmsmbas+nb-1;qmsmbas = pmsmend+1; qmsmend = qmsmbas+nb-1;sfbas = qmsmend+1; sfend = sfbas+nl-1;stbas = sfend+1; stend = stbas+nl-1;% Let makeAy deal with any y-variable for piecewise-linear convex costs.[Ay, by] = makeAy(baseMVA, ng, gencost, pgbas, qgbas, ybas);ncony = size(Ay,1);% Make Avl, lvl, uvl in case there is a need for dispatchable loadsif nvl > 0 xx = gen(vload, PMIN); yy = Qlim; pftheta = atan2(yy, xx); pc = sin(pftheta); qc = -cos(pftheta); ii = [ (1:nvl)'; (1:nvl)' ]; jj = [ pgbas+vload-1; qgbas+vload-1 ]; Avl = sparse(ii, jj, [pc; qc], nvl, yend); lvl = zeros(nvl, 1); uvl = lvl;else Avl =[]; lvl =[]; uvl =[];end% Now form the overall linear restriction matrix; note the order% of the constraints.if (nz > 0) % user defined z variables thus becoming responsible for % defining any Ay needed as well as the cost row (whether there are % y variables or not) in the last row of Au.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -