📄 testing.m
字号:
%=============================================================================%
%= TOA UWB ALGORITHM =%
%= =%
%= Programmed by Jasurbek Khodjaev =%
%= Yeungnam University Mobile Communication Lab. =%
%= MCL 2006 =%
%=============================================================================%
clear all;
clc;
%--------------- Initialization -----------------------------------------
%-------------------------------------------
% Speed of Light
light_speed = 3e8;
% Coordinates of APs
AP = [0 0; 0 10; 10 0]; % in meters
% Number of Access Points (AP)
num_ap = length(AP);
% Tag's initial coordinate
% Tag = [5 4];
% Pulse shape
pulse_order = 1; % 0-Gaussian pulse, 1-First derivative of Gaussian pulse, 2 - Second derivative;
% Number of bits
num_bits = 1000;
% Pulse repetition interval, PRI
pri = 200e-9;
% The SNR range (in dB)
% EbNo = -10
fs = 20e9; %sample rate-10 times the highest frequency in GHz
ts = 1/fs; %sample period
t = [(-1.5E-9-ts):ts:(1.5E-9-ts)]; %vector with sample instants
t1 = .5E-9; %pulse width(0.5 nanoseconds)
%-------------------------------------------------------------------------
%----------------- PRI -------------------------------------------
A =1;%positive value gives negative going monopulse;neg value gives
%positive going monopulse
[y] = monocycle(fs, ts, t, t1, A, pulse_order); % Generate Gaussian pulse
n_pulse_pri = round(pri/ts); % Sampling of PRI
sig = zeros(1,n_pulse_pri);
sig(1:length(y)) = y; % One pulse in one PRI
%-----------------------------------------------------------------
shift_const = 40;
kkk = 0;
for EbNo = -15:5:5
kkk = kkk + 1;
% Tag's initial coordinate
a = round(rand * 10);
b = round(rand * 10);
Tag = [a b];
% Distance calculation between each AP and the Tag, IDEAL case
for ii = 1:num_ap
dist_ap_tag(ii) = dist_t(AP(ii,:), Tag);
% Time from each AP to Tag
time_ap_tag(ii) = dist_ap_tag(ii)/light_speed;
end
%++++++++++++++++ TRANSMISSION +++++++++++++++++++++++++++++++
for jj = 1:num_bits
% % % % % % % From TAG to AP1
% % % % % % % del_sample_ap_tag = round(time_ap_tag(1)/ts);
% % % % % % % xx = zeros(1,del_sample_ap_tag);
% % % % % % h = uwb_channel(dist_ap_tag(1),time_ap_tag(1));
% % % % % % conv_data = conv(y, h);
% % % % % % ap1_tag_chan(jj, :) = conv_data(1:length(sig));
% % % % % %
% % % % % % % From TAG to AP2
% % % % % % % del_sample_ap_tag = round(time_ap_tag(2)/ts);
% % % % % % % xx = zeros(1,del_sample_ap_tag);
% % % % % % h = uwb_channel(dist_ap_tag(2), time_ap_tag(2));
% % % % % % conv_data = conv(y, h);
% % % % % % ap2_tag_chan(jj, :) = conv_data(1:length(sig));
% % % % % %
% % % % % % % From TAG to AP3
% % % % % % % del_sample_ap_tag = round(time_ap_tag(3)/ts);
% % % % % % % xx = zeros(1,del_sample_ap_tag);
% % % % % % h = uwb_channel(dist_ap_tag(3), time_ap_tag(3));
% % % % % % conv_data = conv(y, h);
% % % % % % ap3_tag_chan(jj, :) = conv_data(1:length(sig));
% From TAG to AP1
del_sample_ap_tag = round(time_ap_tag(1)/ts);
xx = zeros(1,del_sample_ap_tag);
% Delayed signals from AP1 to Tag
del_sig_ap1_tag(jj,:) = [xx sig(1:end-length(xx))];
h = uwb_channel(dist_ap_tag(1));
kk = 0;
for ll = 1:length(h)
add_chnl = conv(del_sig_ap1_tag(jj,:), h(ll));
added(ll,:) = [zeros(1,shift_const*kk) add_chnl(1:end - shift_const*kk)];
kk = kk + 1;
end
ap1_tag_chan(jj, :) = sum(added);
% chan_ap1_tag(jj,:) = ap1_tag_chan(1:length(del_sig_ap1_tag));
% From TAG to AP2
del_sample_ap_tag = round(time_ap_tag(2)/ts);
xx = zeros(1,del_sample_ap_tag);
% Delayed signals from AP1 to Tag
del_sig_ap2_tag(jj,:) = [xx sig(1:end-length(xx))];
h = uwb_channel(dist_ap_tag(2));
kk = 0;
for ll = 1:length(h)
add_chnl = conv(del_sig_ap2_tag(jj,:), h(ll));
added(ll,:) = [zeros(1,shift_const*kk) add_chnl(1:end - shift_const*kk)];
kk = kk + 1;
end
ap2_tag_chan(jj, :) = sum(added);
% From TAG to AP3
del_sample_ap_tag = round(time_ap_tag(3)/ts);
xx = zeros(1,del_sample_ap_tag);
% Delayed signals from AP1 to Tag
del_sig_ap3_tag(jj,:) = [xx sig(1:end-length(xx))];
h = uwb_channel(dist_ap_tag(3));
kk = 0;
for ll = 1:length(h)
add_chnl = conv(del_sig_ap3_tag(jj,:), h(ll));
added(ll,:) = [zeros(1,shift_const*kk) add_chnl(1:end - shift_const*kk)];
kk = kk + 1;
end
ap3_tag_chan(jj, :) = sum(added);
end
%-------------------------------------------------------
% Additive White Gaussian Noise (AWGN) Channel ---------
% noise_var = 10^(-EbNo/10);
for jj = 1:num_bits
% ap1_tag_chan_wgn(jj,:) = ap1_tag_chan(jj,:)/std(ap1_tag_chan(jj,:)) + randn(1,length(ap1_tag_chan(jj,:))) .* sqrt(noise_var);
% ap2_tag_chan_wgn(jj,:) = ap2_tag_chan(jj,:)/std(ap2_tag_chan(jj,:)) + randn(1,length(ap2_tag_chan(jj,:))) .* sqrt(noise_var);
% ap3_tag_chan_wgn(jj,:) = ap3_tag_chan(jj,:)/std(ap3_tag_chan(jj,:)) + randn(1,length(ap3_tag_chan(jj,:))) .* sqrt(noise_var);
ap1_tag_chan_wgn(jj,:) = cp0801_Gnoise1(ap1_tag_chan(jj,:), EbNo, 1);
ap2_tag_chan_wgn(jj,:) = cp0801_Gnoise1(ap2_tag_chan(jj,:), EbNo, 1);
ap3_tag_chan_wgn(jj,:) = cp0801_Gnoise1(ap3_tag_chan(jj,:), EbNo, 1);
end
% % %-------------------------------------------------------
% %
% % received_signl_ap1 = sum(ap1_tag_chan_wgn)/num_bits;
% % xc = cp0804_corrsyn(received_signl_ap1, sig, fs);
% % [a,delay1]=max(xc);
% % TOA_1 = (length(sig) - delay1) * ts;
% %
% % %-----------------------------------
% %
% % received_signl_ap2 = sum(ap2_tag_chan_wgn)/num_bits;
% % xc = cp0804_corrsyn(received_signl_ap2, sig, fs);
% % [a,delay2]=max(xc);
% % TOA_2 = (length(sig) - delay2) * ts;
% %
% % %-----------------------------------
% %
% % received_signl_ap3 = sum(ap2_tag_chan_wgn)/num_bits;
% % xc = cp0804_corrsyn(received_signl_ap3, sig, fs);
% % [a,delay3]=max(xc);
% % TOA_3 = (length(sig) - delay3) * ts;
%------------------- AP1 receiver ------------------------------
% Correlator
received_signl_ap1 = sum(ap1_tag_chan_wgn)/num_bits;
xc = xcorr(y, received_signl_ap1);
[a,delay1]=max(xc);
TOA_1 = (length(sig) - delay1) * ts;
%------------------- AP2 receiver ------------------------------
% Correlator
received_signl_ap2 = sum(ap2_tag_chan_wgn)/num_bits;
xc = xcorr(y, received_signl_ap2);
[a,delay2]=max(xc);
TOA_2 = (length(sig) - delay2) * ts;
%------------------- AP3 receiver ------------------------------
% Correlator
received_signl_ap3 = sum(ap3_tag_chan_wgn)/num_bits;
xc = xcorr(y, received_signl_ap3);
[a,delay3] = max(xc);
TOA_3 = (length(sig) - delay3) * ts;
%
% %---------------------------------------------------------------
% time_ap_tag = time_ap_tag;
time_dur = [TOA_1 TOA_2 TOA_3];
toa_error(1,kkk) = toa(AP, Tag, time_dur, light_speed);
end
%
plot(-15:5:5, toa_error);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -