📄 npe.m
字号:
function [eigvector, eigvalue, Y] = NPE(X, M, options)
% NPE: Neighborhood Preserving Embedding
%
% [eigvector, eigvalue] = NPE(X, M, options)
%
% Input:
% X - Data matrix. Each row vector of fea is a data point.
% M - You can either call "constructM"
% to construct the M, or construct it by yourself.
% options - Struct value in Matlab. The fields in options
% that can be set:
% ReducedDim - The dimensionality of the
% reduced subspace. If 0,
% all the dimensions will be
% kept. Default is 0.
% PCARatio - The percentage of principal
% component kept in the PCA
% step. The percentage is
% calculated based on the
% eigenvalue. Default is 1
% (100%, all the non-zero
% eigenvalues will be kept.
% Output:
% eigvector - Each column is an embedding function, for a new
% data point (row vector) x, y = x*eigvector
% will be the embedding result of x.
% eigvalue - The eigvalue of LPP eigen-problem. sorted from
% smallest to largest.
%
%
% [eigvector, eigvalue, Y] = NPE(X, M, options)
%
% Y: The embedding results, Each row vector is a data point.
% Y = X*eigvector
%
%
% Examples:
%
% fea = rand(50,70);
% options = [];
% options.NeighborMode = 'KNN';
% options.k = 5;
% M = constructM(fea,options);
% options.PCARatio = 0.99
% [eigvector, eigvalue, Y] = NPE(fea, M, options);
%
%
% fea = rand(50,70);
% gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
% options = [];
% options.NeighborMode = 'Supervised';
% options.gnd = gnd;
% options.k = 0;
% M = constructM(fea,options);
% options.PCARatio = 1;
% [eigvector, eigvalue, Y] = NPE(fea, M, options);
%
%
%
%
% See also constructM, pca.
%Reference:
%
% Xiaofei He, Deng Cai, Shuicheng Yan, and Hong-Jiang
% Zhang, "Neighborhood Preserving Embedding", Tenth IEEE International
% Conference on Computer Vision (ICCV'2005), 2005
%
% Sam Roweis & Lawrence Saul. "Nonlinear dimensionality reduction by
% locally linear embedding", Science, v.290 no.5500 , Dec.22, 2000.
% pp.2323--2326.
%
% Written by Deng Cai (dengcai@gmail.com), Jan/2005, Jan/2007
if (~exist('options','var'))
options = [];
else
if ~strcmpi(class(options),'struct')
error('parameter error!');
end
end
if ~isfield(options,'PCARatio')
[eigvector_PCA, eigvalue_PCA, meanData, new_X] = PCA(X);
else
PCAoptions = [];
PCAoptions.PCARatio = options.PCARatio;
[eigvector_PCA, eigvalue_PCA, meanData, new_X] = PCA(X,PCAoptions);
end
old_X = X;
X = new_X;
[nSmp,nFea] = size(X);
if nFea > nSmp
error('X is not of full rank in column!!');
end
if ~isfield(options,'ReducedDim')
ReducedDim = nFea;
else
ReducedDim = options.ReducedDim;
end
if ReducedDim > nFea
ReducedDim = nFea;
end
W = sparse(eye(size(M)) - M);
WPrime = X'*W*X;
DPrime = X'*X;
DPrime = max(DPrime,DPrime');
WPrime = max(WPrime,WPrime');
dimMatrix = size(DPrime,2);
if (dimMatrix > 1500) & (ReducedDim < dimMatrix/10)
disp('use eigs to speed up!');
option = struct('disp',0);
[eigvector, eigvalue] = eigs(WPrime,DPrime,ReducedDim,'la',option);
eigvalue = diag(eigvalue);
else
[eigvector, eigvalue] = eig(WPrime,DPrime);
eigvalue = diag(eigvalue);
[junk, index] = sort(-eigvalue);
eigvalue = eigvalue(index);
eigvector = eigvector(:,index);
end
eigIdx = find(abs(eigvalue) < 1e-10);
eigvalue (eigIdx) = [];
eigvector(:,eigIdx) = [];
eigvalue = ones(length(eigvalue),1) - eigvalue;
if ReducedDim < size(eigvector,2)
eigvector = eigvector(:, 1:ReducedDim);
eigvalue = eigvalue(1:ReducedDim);
end
for i = 1:size(eigvector,2)
eigvector(:,i) = eigvector(:,i)./norm(eigvector(:,i));
end
eigvector =eigvector_PCA*eigvector;
if nargout == 3
Y = old_X * eigvector;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -