📄 lda.m
字号:
function [eigvector, eigvalue, Y] = LDA(X,gnd)
% LDA: Linear discriminant analysis (Fisherfaces approach PCA+LDA)
%
% [eigvector, eigvalue] = LDA(X, gnd)
%
% Input:
% X - Data matrix. Each row vector of fea is a data point.
% gnd - Colunm vector of the label information for each
% data point.
%
% Output:
% eigvector - Each column is an embedding function, for a new
% data point (row vector) x, y = x*eigvector
% will be the embedding result of x.
% eigvalue - The eigvalue of LDA eigen-problem.
%
%
% [eigvector, eigvalue, Y] = LDA(X, gnd)
%
% Y: The embedding results, Each row vector is a data point.
% Y = X*eigvector
%
% Reference:
%
% P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, 揈igenfaces
% vs. fisherfaces: recognition using class specific linear
% projection,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -