📄 lpp.m
字号:
function [eigvector, eigvalue, Y] = LPP(X, W, options)
% LPP: Locality Preserving Projections
%
% [eigvector, eigvalue] = LPP(X, W, options)
%
% Input:
% X - Data matrix. Each row vector of fea is a data point.
% W - Affinity matrix. You can either call "constructW"
% to construct the W, or construct it by yourself.
% options - Struct value in Matlab. The fields in options
% that can be set:
% ReducedDim - The dimensionality of the
% reduced subspace. If 0,
% all the dimensions will be
% kept. Default is 0.
% PCARatio - The percentage of principal
% component kept in the PCA
% step. The percentage is
% calculated based on the
% eigenvalue. Default is 1
% (100%, all the non-zero
% eigenvalues will be kept.
% Output:
% eigvector - Each column is an embedding function, for a new
% data point (row vector) x, y = x*eigvector
% will be the embedding result of x.
% eigvalue - The eigvalue of LPP eigen-problem. sorted from
% smallest to largest.
%
%
% [eigvector, eigvalue, Y] = LPP(X, W, options)
%
% Y: The embedding results, Each row vector is a data point.
% Y = X*eigvector
%
%
% Examples:
%
% fea = rand(50,70);
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'KNN';
% options.k = 5;
% options.WeightMode = 'HeatKernel';
% options.t = 1;
% W = constructW(fea,options);
% options.PCARatio = 0.99
% [eigvector, eigvalue, Y] = LPP(fea, W, options);
%
%
% fea = rand(50,70);
% gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'Supervised';
% options.gnd = gnd;
% options.bLDA = 1;
% W = constructW(fea,options);
% options.PCARatio = 1;
% [eigvector, eigvalue, Y] = LPP(fea, W, options);
%
%
% Note: After applying some simple algebra, the smallest eigenvalue problem:
% X^T*L*X = \lemda X^T*D*X
% is equivalent to the largest eigenvalue problem:
% X^T*W*X = \beta X^T*D*X
% where L=D-W; \lemda= 1 - \beta.
% Thus, the smallest eigenvalue problem can be transformed to a largest
% eigenvalue problem. Such tricks are adopted in this code for the
% consideration of calculation precision of Matlab.
%
%
% See also constructW, pca.
%Reference:
% Xiaofei He, and Partha Niyogi, "Locality Preserving Projections"
% Advances in Neural Information Processing Systems 16 (NIPS 2003),
% Vancouver, Canada, 2003.
%
% Xiaofei He, Shuicheng Yan, Yuxiao Hu, Partha Niyogi, and Hong-Jiang
% Zhang, "Face Recognition Using Laplacianfaces", IEEE PAMI, Vol. 27, No.
% 3, Mar. 2005.
%
% Deng Cai, Xiaofei He and Jiawei Han, "Document Clustering Using
% Locality Preserving Indexing" IEEE TKDE, Dec. 2005.
%
% Deng Cai, Xiaofei He and Jiawei Han, "Using Graph Model for Face Analysis",
% Technical Report, UIUCDCS-R-2005-2636, UIUC, Sept. 2005
%
% Written by Deng Cai (dengcai@gmail.com), April/2004, Feb/2006
if (~exist('options','var'))
options = [];
else
if ~strcmpi(class(options),'struct')
error('parameter error!');
end
end
if ~isfield(options,'PCARatio')
[eigvector_PCA, eigvalue_PCA, meanData, new_X] = PCA(X);
else
PCAoptions = [];
PCAoptions.PCARatio = options.PCARatio;
[eigvector_PCA, eigvalue_PCA, meanData, new_X] = PCA(X,PCAoptions);
end
old_X = X;
X = new_X;
[nSmp,nFea] = size(X);
if nFea > nSmp
error('X is not of full rank in column!!');
end
if ~isfield(options,'ReducedDim')
ReducedDim = nFea;
else
ReducedDim = options.ReducedDim;
end
if ReducedDim > nFea
ReducedDim = nFea;
end
D = diag(sum(W));
%L = D - W;
L = W;
DPrime = X'*D*X;
DPrime = max(DPrime,DPrime');
LPrime = X'*L*X;
LPrime = max(LPrime,LPrime');
dimMatrix = size(DPrime,2);
if dimMatrix > 1000 & ReducedDim < dimMatrix/10 % using eigs to speed up!
option = struct('disp',0);
[eigvector, eigvalue] = eigs(LPrime,DPrime,ReducedDim,'la',option);
eigvalue = diag(eigvalue);
else
[eigvector, eigvalue] = eig(LPrime,DPrime);
eigvalue = diag(eigvalue);
[junk, index] = sort(-eigvalue);
eigvalue = eigvalue(index);
eigvector = eigvector(:,index);
end
eigvalue = ones(length(eigvalue),1) - eigvalue;
if ReducedDim < size(eigvector,2)
eigvector = eigvector(:, 1:ReducedDim);
eigvalue = eigvalue(1:ReducedDim);
end
for i = 1:size(eigvector,2)
eigvector(:,i) = eigvector(:,i)./norm(eigvector(:,i));
end
eigvector = eigvector_PCA*eigvector;
if nargout == 3
Y = old_X * eigvector;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -