⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matlab_wavelet.txt

📁 关于小波变换的一些matlab试验模拟程序。希望对初学者有所帮助
💻 TXT
📖 第 1 页 / 共 4 页
字号:
l_fre_down=dyaddown(l_fre); %抽取,得低频细节

h_fre=conv(y,high_decompose);

h_fre_down=dyaddown(h_fre); %信号高频细节

figure(2);

subplot(2,1,1)

plot(l_fre_down);

title('小波分解的低频系数');

subplot(2,1,2);

plot(h_fre_down);

title('小波分解的高频系数');

l_fre_pull=dyadup(l_fre_down); %0差值

h_fre_pull=dyadup(h_fre_down);

l_fre_denoise=conv(low_construct,l_fre_pull);

h_fre_denoise=conv(high_construct,h_fre_pull);

l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响

h_fre_keep=wkeep(h_fre_denoise,L_signal);

sig_denoise=l_fre_keep+h_fre_keep; %信号重构

compare=sig_denoise-y; %与原信号比较

figure(3);

subplot(3,1,1)

plot(y); 

ylabel('y'); %原信号

subplot(3,1,2);

plot(sig_denoise); 

ylabel('sig\_denoise'); %重构信号

subplot(3,1,3);

plot(compare);

ylabel('compare'); %原信号与消噪后信号的比较


2.消噪

% mallet_wavelet.m

% 此函数用于研究Mallet算法及滤波器设计

% 此函数用于消噪处理

%角度赋值

%此处赋值使滤波器系数恰为db9

%分解的高频系数采用db9较好,即它的消失矩较大

%分解的有用信号小波高频系数基本趋于零

%对于噪声信号高频分解系数很大,便于阈值消噪处理

[l,h]=wfilters('db10','d');

low_construct=l;

L_fre=20; %滤波器长度

low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器

for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器

if(mod(i_high,2)==0);

coefficient=-1;

else

coefficient=1;

end

high_construct(1,i_high)=low_decompose(1,i_high)*coefficient;

end

high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n)

L_signal=100; %信号长度

n=1:L_signal; %原始信号赋值

f=10;

t=0.001;

y=10*cos(2*pi*50*n*t).*exp(-30*n*t);

zero1=zeros(1,60); %信号加噪声信号产生

zero2=zeros(1,30);

noise=[zero1,3*(randn(1,10)-0.5),zero2];

y_noise=y+noise;

figure(1);

subplot(2,1,1);

plot(y);

title('原信号');

subplot(2,1,2);

plot(y_noise);

title('受噪声污染的信号');

check1=sum(high_decompose); %h0(n),性质校验

check2=sum(low_decompose);

check3=norm(high_decompose);

check4=norm(low_decompose);

l_fre=conv(y_noise,low_decompose); %卷积

l_fre_down=dyaddown(l_fre); %抽取,得低频细节

h_fre=conv(y_noise,high_decompose);

h_fre_down=dyaddown(h_fre); %信号高频细节

figure(2);

subplot(2,1,1)

plot(l_fre_down);

title('小波分解的低频系数');

subplot(2,1,2);

plot(h_fre_down);

title('小波分解的高频系数');

% 消噪处理

for i_decrease=31:44;

if abs(h_fre_down(1,i_decrease))>=0.000001

h_fre_down(1,i_decrease)=(10^-7);

end

end

l_fre_pull=dyadup(l_fre_down); %0差值

h_fre_pull=dyadup(h_fre_down);

l_fre_denoise=conv(low_construct,l_fre_pull);

h_fre_denoise=conv(high_construct,h_fre_pull);

l_fre_keep=wkeep(l_fre_denoise,L_signal); %取结果的中心部分,消除卷积影响

h_fre_keep=wkeep(h_fre_denoise,L_signal);

sig_denoise=l_fre_keep+h_fre_keep; %消噪后信号重构

%平滑处理

for j=1:2

for i=60:70;

sig_denoise(i)=sig_denoise(i-2)+sig_denoise(i+2)/2;

end;

end;

compare=sig_denoise-y; %与原信号比较

figure(3);

subplot(3,1,1)

plot(y); 

ylabel('y'); %原信号

subplot(3,1,2);

plot(sig_denoise); 

ylabel('sig\_denoise'); %消噪后信号

subplot(3,1,3);

plot(compare);

ylabel('compare'); %原信号与消噪后信号的比较 

 
    
 
   
 
 
 
  
 
simon21  


  新科状元 
 
   
  精华: 6 
 积分: 400
 帖子: 670
 威望: 321 点
 振动币: 23552 个
 管理积分: 0 点
 人气指数: 0
 阅读权限: 80
 注册: 2005-7-24
 
 
 
 


  第 6 楼发表于 2006-3-31 08:46 资料 个人空间 短消息  
回复:(simon21)[分享]个人收集的一些关于小波分析的...


小波谱分析mallat算法经典程序 

clc;clear;
%% 1.正弦波定义
f1=50; % 频率1
f2=100; % 频率2
fs=2*(f1+f2); % 采样频率
Ts=1/fs; % 采样间隔
N=120; % 采样点数
n=1:N;
y=sin(2*pi*f1*n*Ts)+sin(2*pi*f2*n*Ts); % 正弦波混合
figure(1)
plot(y);
title('两个正弦信号')
figure(2)
stem(abs(fft(y)));
title('两信号频谱')
%% 2.小波滤波器谱分析
h=wfilters('db30','l'); % 低通
g=wfilters('db30','h'); % 高通
h=[h,zeros(1,N-length(h))]; % 补零(圆周卷积,且增大分辨率变于观察)
g=[g,zeros(1,N-length(g))]; % 补零(圆周卷积,且增大分辨率变于观察)
figure(3);
stem(abs(fft(h)));
title('低通滤波器图')
figure(4);
stem(abs(fft(g)));
title('高通滤波器图')
%% 3.MALLET分解算法(圆周卷积的快速傅里叶变换实现)
sig1=ifft(fft(y).*fft(h)); % 低通(低频分量)
sig2=ifft(fft(y).*fft(g)); % 高通(高频分量)
figure(5); % 信号图
subplot(2,1,1)
plot(real(sig1));
title('分解信号1')
subplot(2,1,2)
plot(real(sig2));
title('分解信号2')
figure(6); % 频谱图
subplot(2,1,1)
stem(abs(fft(sig1)));
title('分解信号1频谱')
subplot(2,1,2)
stem(abs(fft(sig2)));
title('分解信号2频谱')
%% 4.MALLET重构算法
sig1=dyaddown(sig1); % 2抽取
sig2=dyaddown(sig2); % 2抽取
sig1=dyadup(sig1); % 2插值
sig2=dyadup(sig2); % 2插值
sig1=sig1(1,[1:N]); % 去掉最后一个零
sig2=sig2(1,[1:N]); % 去掉最后一个零
hr=h(end:-1:1); % 重构低通
gr=g(end:-1:1); % 重构高通
hr=circshift(hr',1)'; % 位置调整圆周右移一位
gr=circshift(gr',1)'; % 位置调整圆周右移一位
sig1=ifft(fft(hr).*fft(sig1)); % 低频
sig2=ifft(fft(gr).*fft(sig2)); % 高频
sig=sig1+sig2; % 源信号
%% 5.比较
figure(7);
subplot(2,1,1)
plot(real(sig1));
title('重构低频信号');
subplot(2,1,2)
plot(real(sig2));
title('重构高频信号');
figure(8);
subplot(2,1,1)
stem(abs(fft(sig1)));
title('重构低频信号频谱');
subplot(2,1,2)
stem(abs(fft(sig2)));
title('重构高频信号频谱');
figure(9)
plot(real(sig),'r','linewidth',2);
hold on;
plot(y);
legend('重构信号','原始信号')
title('重构信号与原始信号比较') 
 
    
 
   
 
 
 
  
 
simon21  


  新科状元 
 
   
  精华: 6 
 积分: 400
 帖子: 670
 威望: 321 点
 振动币: 23552 个
 管理积分: 0 点
 人气指数: 0
 阅读权限: 80
 注册: 2005-7-24
 
 
 
 


  第 7 楼发表于 2006-3-31 08:46 资料 个人空间 短消息  
回复:(simon21)[分享]个人收集的一些关于小波分析的...


2维小波变换经典程序 

% FWT_DB.M;
% 此示意程序用DWT实现二维小波变换
% 编程时间2004-4-10,编程人沙威
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;clc;
T=256; % 图像维数
SUB_T=T/2; % 子图维数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1.调原始图像矩阵
load wbarb; % 下载图像
f=X; % 原始图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2.进行二维小波分解
l=wfilters('db10','l'); % db10(消失矩为10)低通分解滤波器冲击响应(长度为20)
L=T-length(l);
l_zeros=[l,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
h=wfilters('db10','h'); % db10(消失矩为10)高通分解滤波器冲击响应(长度为20)
h_zeros=[h,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
for i=1:T; % 列变换
row(1:SUB_T,i)=dyaddown( ifft( fft(l_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
row(SUB_T+1:T,i)=dyaddown( ifft( fft(h_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
end;
for j=1:T; % 行变换
line(j,1:SUB_T)=dyaddown( ifft( fft(l_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
line(j,SUB_T+1:T)=dyaddown( ifft( fft(h_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
end;
decompose_pic=line; % 分解矩阵
% 图像分为四块
lt_pic=decompose_pic(1:SUB_T,1:SUB_T); % 在矩阵左上方为低频分量--fi(x)*fi(y)
rt_pic=decompose_pic(1:SUB_T,SUB_T+1:T); % 矩阵右上为--fi(x)*psi(y)
lb_pic=decompose_pic(SUB_T+1:T,1:SUB_T); % 矩阵左下为--psi(x)*fi(y)
rb_pic=decompose_pic(SUB_T+1:T,SUB_T+1:T); % 右下方为高频分量--psi(x)*psi(y)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3.分解结果显示
figure(1);
colormap(map);
subplot(2,1,1);
image(f); % 原始图像 
title('original pic');
subplot(2,1,2);
image(abs(decompose_pic)); % 分解后图像
title('decomposed pic'); 
figure(2);
colormap(map);
subplot(2,2,1);
image(abs(lt_pic)); % 左上方为低频分量--fi(x)*fi(y)
title('\Phi(x)*\Phi(y)');
subplot(2,2,2);
image(abs(rt_pic)); % 矩阵右上为--fi(x)*psi(y)
title('\Phi(x)*\Psi(y)');
subplot(2,2,3);
image(abs(lb_pic)); % 矩阵左下为--psi(x)*fi(y)
title('\Psi(x)*\Phi(y)');
subplot(2,2,4);
image(abs(rb_pic)); % 右下方为高频分量--psi(x)*psi(y)
title('\Psi(x)*\Psi(y)');


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 5.重构源图像及结果显示
% construct_pic=decompose_matrix'*decompose_pic*decompose_matrix;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
l_re=l_zeros(end:-1:1); % 重构低通滤波
l_r=circshift(l_re',1)'; % 位置调整
h_re=h_zeros(end:-1:1); % 重构高通滤波
h_r=circshift(h_re',1)'; % 位置调整

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
top_pic=[lt_pic,rt_pic]; % 图像上半部分
t=0;
for i=1:T; % 行插值低频

if (mod(i,2)==0)
topll(i,:)=top_pic(t,:); % 偶数行保持
else
t=t+1;
topll(i,:)=zeros(1,T); % 奇数行为零
end
end;
for i=1:T; % 列变换
topcl_re(:,i)=ifft( fft(l_r).*fft(topll(:,i)') )'; % 圆周卷积<->FFT
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bottom_pic=[lb_pic,rb_pic]; % 图像下半部分
t=0;
for i=1:T; % 行插值高频
if (mod(i,2)==0)
bottomlh(i,:)=bottom_pic(t,:); % 偶数行保持
else
bottomlh(i,:)=zeros(1,T); % 奇数行为零
t=t+1;
end
end;
for i=1:T; % 列变换
bottomch_re(:,i)=ifft( fft(h_r).*fft(bottomlh(:,i)') )'; % 圆周卷积<->FFT
end;

construct1=bottomch_re+topcl_re; % 列变换重构完毕

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
left_pic=construct1(:,1:SUB_T); % 图像左半部分
t=0;
for i=1:T; % 列插值低频

if (mod(i,2)==0)
leftll(:,i)=left_pic(:,t); % 偶数列保持
else
t=t+1;
leftll(:,i)=zeros(T,1); % 奇数列为零
end
end;
for i=1:T; % 行变换
leftcl_re(i,:)=ifft( fft(l_r).*fft(leftll(i,:)) ); % 圆周卷积<->FFT
end;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
right_pic=construct1(:,SUB_T+1:T); % 图像右半部分

t=0;
for i=1:T; % 列插值高频
if (mod(i,2)==0)
rightlh(:,i)=right_pic(:,t); % 偶数列保持
else
rightlh(:,i)=zeros(T,1); % 奇数列为零
t=t+1;
end
end;
for i=1:T; % 行变换
rightch_re(i,:)=ifft( fft(h_r).*fft(rightlh(i,:)) ); % 圆周卷积<->FFT
end;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
construct_pic=rightch_re+leftcl_re; % 重建全部图像

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 结果显示
figure(3);
colormap(map);
subplot(2,1,1);
image(f); % 源图像显示
title('original pic');

subplot(2,1,2);
image(abs(construct_pic)); % 重构源图像显示
title('reconstructed pic');
error=abs(construct_pic-f); % 重构图形与原始图像误值
figure(4);
mesh(error); % 误差三维图像
title('absolute error display'); 

 
    
 
   
 
 
 
  
 
lyh_0772  


  应门书童 
 
   
  精华: 0
 积分: 2
 帖子: 5
 威望: 1 点
 振动币: 267 个
 管理积分: 0 点
 人气指数: 0
 阅读权限: 10
 注册: 2006-3-7
 
 
 
 


  第 8 楼发表于 2006-4-1 16:03 资料 文集 短消息  
 
    
 
   
 
 
 
  
 
eros  


  应门书童 
 
   
  精华: 0
 积分: 1
 帖子: 1
 威望: 1 点
 振动币: 124 个
 管理积分: 0 点
 人气指数: 0
 阅读权限: 10
 注册: 2006-4-2
 
 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -