⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bsdqueue.h

📁 一个C语言写的快速贝叶斯垃圾邮件过滤工具
💻 H
📖 第 1 页 / 共 2 页
字号:
/*	$NetBSD: queue.h,v 1.39 2004/04/18 14:25:34 lukem Exp $	*//* * Copyright (c) 1991, 1993 *	The Regents of the University of California.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * *	@(#)queue.h	8.5 (Berkeley) 8/20/94 */#ifndef	_SYS_QUEUE_H_#define	_SYS_QUEUE_H_/* * This file defines five types of data structures: singly-linked lists, * lists, simple queues, tail queues, and circular queues. * * A singly-linked list is headed by a single forward pointer. The * elements are singly linked for minimum space and pointer manipulation * overhead at the expense of O(n) removal for arbitrary elements. New * elements can be added to the list after an existing element or at the * head of the list.  Elements being removed from the head of the list * should use the explicit macro for this purpose for optimum * efficiency. A singly-linked list may only be traversed in the forward * direction.  Singly-linked lists are ideal for applications with large * datasets and few or no removals or for implementing a LIFO queue. * * A list is headed by a single forward pointer (or an array of forward * pointers for a hash table header). The elements are doubly linked * so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before * or after an existing element or at the head of the list. A list * may only be traversed in the forward direction. * * A simple queue is headed by a pair of pointers, one the head of the * list and the other to the tail of the list. The elements are singly * linked to save space, so only elements can only be removed from the * head of the list. New elements can be added to the list after * an existing element, at the head of the list, or at the end of the * list. A simple queue may only be traversed in the forward direction. * * A tail queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or * after an existing element, at the head of the list, or at the end of * the list. A tail queue may be traversed in either direction. * * A circle queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or after * an existing element, at the head of the list, or at the end of the list. * A circle queue may be traversed in either direction, but has a more * complex end of list detection. * * For details on the use of these macros, see the queue(3) manual page. *//* * List definitions. */#define	LIST_HEAD(name, type)						\struct name {								\	struct type *lh_first;	/* first element */			\}#define	LIST_HEAD_INITIALIZER(head)					\	{ NULL }#define	LIST_ENTRY(type)						\struct {								\	struct type *le_next;	/* next element */			\	struct type **le_prev;	/* address of previous next element */	\}/* * List functions. */#if defined(_KERNEL) && defined(QUEUEDEBUG)#define	QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field)			\	if ((head)->lh_first &&						\	    (head)->lh_first->field.le_prev != &(head)->lh_first)	\		panic("LIST_INSERT_HEAD %p %s:%d", (head), __FILE__, __LINE__);#define	QUEUEDEBUG_LIST_OP(elm, field)					\	if ((elm)->field.le_next &&					\	    (elm)->field.le_next->field.le_prev !=			\	    &(elm)->field.le_next)					\		panic("LIST_* forw %p %s:%d", (elm), __FILE__, __LINE__);\	if (*(elm)->field.le_prev != (elm))				\		panic("LIST_* back %p %s:%d", (elm), __FILE__, __LINE__);#define	QUEUEDEBUG_LIST_POSTREMOVE(elm, field)				\	(elm)->field.le_next = (void *)1L;				\	(elm)->field.le_prev = (void *)1L;#else#define	QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field)#define	QUEUEDEBUG_LIST_OP(elm, field)#define	QUEUEDEBUG_LIST_POSTREMOVE(elm, field)#endif#define	LIST_INIT(head) do {						\	(head)->lh_first = NULL;					\} while (/*CONSTCOND*/0)#define	LIST_INSERT_AFTER(listelm, elm, field) do {			\	QUEUEDEBUG_LIST_OP((listelm), field)				\	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\		(listelm)->field.le_next->field.le_prev =		\		    &(elm)->field.le_next;				\	(listelm)->field.le_next = (elm);				\	(elm)->field.le_prev = &(listelm)->field.le_next;		\} while (/*CONSTCOND*/0)#define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\	QUEUEDEBUG_LIST_OP((listelm), field)				\	(elm)->field.le_prev = (listelm)->field.le_prev;		\	(elm)->field.le_next = (listelm);				\	*(listelm)->field.le_prev = (elm);				\	(listelm)->field.le_prev = &(elm)->field.le_next;		\} while (/*CONSTCOND*/0)#define	LIST_INSERT_HEAD(head, elm, field) do {				\	QUEUEDEBUG_LIST_INSERT_HEAD((head), (elm), field)		\	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\	(head)->lh_first = (elm);					\	(elm)->field.le_prev = &(head)->lh_first;			\} while (/*CONSTCOND*/0)#define	LIST_REMOVE(elm, field) do {					\	QUEUEDEBUG_LIST_OP((elm), field)				\	if ((elm)->field.le_next != NULL)				\		(elm)->field.le_next->field.le_prev = 			\		    (elm)->field.le_prev;				\	*(elm)->field.le_prev = (elm)->field.le_next;			\	QUEUEDEBUG_LIST_POSTREMOVE((elm), field)			\} while (/*CONSTCOND*/0)#define	LIST_FOREACH(var, head, field)					\	for ((var) = ((head)->lh_first);				\		(var);							\		(var) = ((var)->field.le_next))/* * List access methods. */#define	LIST_EMPTY(head)		((head)->lh_first == NULL)#define	LIST_FIRST(head)		((head)->lh_first)#define	LIST_NEXT(elm, field)		((elm)->field.le_next)/* * Singly-linked List definitions. */#define	SLIST_HEAD(name, type)						\struct name {								\	struct type *slh_first;	/* first element */			\}#define	SLIST_HEAD_INITIALIZER(head)					\	{ NULL } #define	SLIST_ENTRY(type)						\struct {								\	struct type *sle_next;	/* next element */			\} /* * Singly-linked List functions. */#define	SLIST_INIT(head) do {						\	(head)->slh_first = NULL;					\} while (/*CONSTCOND*/0)#define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\	(elm)->field.sle_next = (slistelm)->field.sle_next;		\	(slistelm)->field.sle_next = (elm);				\} while (/*CONSTCOND*/0)#define	SLIST_INSERT_HEAD(head, elm, field) do {			\	(elm)->field.sle_next = (head)->slh_first;			\	(head)->slh_first = (elm);					\} while (/*CONSTCOND*/0)#define	SLIST_REMOVE_HEAD(head, field) do {				\	(head)->slh_first = (head)->slh_first->field.sle_next;		\} while (/*CONSTCOND*/0)#define	SLIST_REMOVE(head, elm, type, field) do {			\	if ((head)->slh_first == (elm)) {				\		SLIST_REMOVE_HEAD((head), field);			\	}								\	else {								\		struct type *curelm = (head)->slh_first;		\		while(curelm->field.sle_next != (elm))			\			curelm = curelm->field.sle_next;		\		curelm->field.sle_next =				\		    curelm->field.sle_next->field.sle_next;		\	}								\} while (/*CONSTCOND*/0)#define	SLIST_FOREACH(var, head, field)					\	for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)/* * Singly-linked List access methods. */#define	SLIST_EMPTY(head)	((head)->slh_first == NULL)#define	SLIST_FIRST(head)	((head)->slh_first)#define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)/* * Singly-linked Tail queue declarations. */#define	STAILQ_HEAD(name, type)					\struct name {								\	struct type *stqh_first;	/* first element */			\	struct type **stqh_last;	/* addr of last next element */		\}#define	STAILQ_HEAD_INITIALIZER(head)					\	{ NULL, &(head).stqh_first }#define	STAILQ_ENTRY(type)						\struct {								\	struct type *stqe_next;	/* next element */			\}/* * Singly-linked Tail queue functions. */#define	STAILQ_INIT(head) do {						\	(head)->stqh_first = NULL;					\	(head)->stqh_last = &(head)->stqh_first;				\} while (/*CONSTCOND*/0)#define	STAILQ_INSERT_HEAD(head, elm, field) do {			\	if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)	\		(head)->stqh_last = &(elm)->field.stqe_next;		\	(head)->stqh_first = (elm);					\} while (/*CONSTCOND*/0)#define	STAILQ_INSERT_TAIL(head, elm, field) do {			\	(elm)->field.stqe_next = NULL;					\	*(head)->stqh_last = (elm);					\	(head)->stqh_last = &(elm)->field.stqe_next;			\} while (/*CONSTCOND*/0)#define	STAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\	if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\		(head)->stqh_last = &(elm)->field.stqe_next;		\	(listelm)->field.stqe_next = (elm);				\} while (/*CONSTCOND*/0)#define	STAILQ_REMOVE_HEAD(head, field) do {				\	if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \		(head)->stqh_last = &(head)->stqh_first;			\} while (/*CONSTCOND*/0)#define	STAILQ_REMOVE(head, elm, type, field) do {			\	if ((head)->stqh_first == (elm)) {				\		STAILQ_REMOVE_HEAD((head), field);			\	} else {							\		struct type *curelm = (head)->stqh_first;		\		while (curelm->field.stqe_next != (elm))			\			curelm = curelm->field.stqe_next;		\		if ((curelm->field.stqe_next =				\			curelm->field.stqe_next->field.stqe_next) == NULL) \			    (head)->stqh_last = &(curelm)->field.stqe_next; \	}								\} while (/*CONSTCOND*/0)#define	STAILQ_FOREACH(var, head, field)				\	for ((var) = ((head)->stqh_first);				\		(var);							\		(var) = ((var)->field.stqe_next))/* * Singly-linked Tail queue access methods. */#define	STAILQ_EMPTY(head)	((head)->stqh_first == NULL)#define	STAILQ_FIRST(head)	((head)->stqh_first)#define	STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -