📄 bsdqueue.h
字号:
/* $NetBSD: queue.h,v 1.39 2004/04/18 14:25:34 lukem Exp $ *//* * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)queue.h 8.5 (Berkeley) 8/20/94 */#ifndef _SYS_QUEUE_H_#define _SYS_QUEUE_H_/* * This file defines five types of data structures: singly-linked lists, * lists, simple queues, tail queues, and circular queues. * * A singly-linked list is headed by a single forward pointer. The * elements are singly linked for minimum space and pointer manipulation * overhead at the expense of O(n) removal for arbitrary elements. New * elements can be added to the list after an existing element or at the * head of the list. Elements being removed from the head of the list * should use the explicit macro for this purpose for optimum * efficiency. A singly-linked list may only be traversed in the forward * direction. Singly-linked lists are ideal for applications with large * datasets and few or no removals or for implementing a LIFO queue. * * A list is headed by a single forward pointer (or an array of forward * pointers for a hash table header). The elements are doubly linked * so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before * or after an existing element or at the head of the list. A list * may only be traversed in the forward direction. * * A simple queue is headed by a pair of pointers, one the head of the * list and the other to the tail of the list. The elements are singly * linked to save space, so only elements can only be removed from the * head of the list. New elements can be added to the list after * an existing element, at the head of the list, or at the end of the * list. A simple queue may only be traversed in the forward direction. * * A tail queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or * after an existing element, at the head of the list, or at the end of * the list. A tail queue may be traversed in either direction. * * A circle queue is headed by a pair of pointers, one to the head of the * list and the other to the tail of the list. The elements are doubly * linked so that an arbitrary element can be removed without a need to * traverse the list. New elements can be added to the list before or after * an existing element, at the head of the list, or at the end of the list. * A circle queue may be traversed in either direction, but has a more * complex end of list detection. * * For details on the use of these macros, see the queue(3) manual page. *//* * List definitions. */#define LIST_HEAD(name, type) \struct name { \ struct type *lh_first; /* first element */ \}#define LIST_HEAD_INITIALIZER(head) \ { NULL }#define LIST_ENTRY(type) \struct { \ struct type *le_next; /* next element */ \ struct type **le_prev; /* address of previous next element */ \}/* * List functions. */#if defined(_KERNEL) && defined(QUEUEDEBUG)#define QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field) \ if ((head)->lh_first && \ (head)->lh_first->field.le_prev != &(head)->lh_first) \ panic("LIST_INSERT_HEAD %p %s:%d", (head), __FILE__, __LINE__);#define QUEUEDEBUG_LIST_OP(elm, field) \ if ((elm)->field.le_next && \ (elm)->field.le_next->field.le_prev != \ &(elm)->field.le_next) \ panic("LIST_* forw %p %s:%d", (elm), __FILE__, __LINE__);\ if (*(elm)->field.le_prev != (elm)) \ panic("LIST_* back %p %s:%d", (elm), __FILE__, __LINE__);#define QUEUEDEBUG_LIST_POSTREMOVE(elm, field) \ (elm)->field.le_next = (void *)1L; \ (elm)->field.le_prev = (void *)1L;#else#define QUEUEDEBUG_LIST_INSERT_HEAD(head, elm, field)#define QUEUEDEBUG_LIST_OP(elm, field)#define QUEUEDEBUG_LIST_POSTREMOVE(elm, field)#endif#define LIST_INIT(head) do { \ (head)->lh_first = NULL; \} while (/*CONSTCOND*/0)#define LIST_INSERT_AFTER(listelm, elm, field) do { \ QUEUEDEBUG_LIST_OP((listelm), field) \ if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \ (listelm)->field.le_next->field.le_prev = \ &(elm)->field.le_next; \ (listelm)->field.le_next = (elm); \ (elm)->field.le_prev = &(listelm)->field.le_next; \} while (/*CONSTCOND*/0)#define LIST_INSERT_BEFORE(listelm, elm, field) do { \ QUEUEDEBUG_LIST_OP((listelm), field) \ (elm)->field.le_prev = (listelm)->field.le_prev; \ (elm)->field.le_next = (listelm); \ *(listelm)->field.le_prev = (elm); \ (listelm)->field.le_prev = &(elm)->field.le_next; \} while (/*CONSTCOND*/0)#define LIST_INSERT_HEAD(head, elm, field) do { \ QUEUEDEBUG_LIST_INSERT_HEAD((head), (elm), field) \ if (((elm)->field.le_next = (head)->lh_first) != NULL) \ (head)->lh_first->field.le_prev = &(elm)->field.le_next;\ (head)->lh_first = (elm); \ (elm)->field.le_prev = &(head)->lh_first; \} while (/*CONSTCOND*/0)#define LIST_REMOVE(elm, field) do { \ QUEUEDEBUG_LIST_OP((elm), field) \ if ((elm)->field.le_next != NULL) \ (elm)->field.le_next->field.le_prev = \ (elm)->field.le_prev; \ *(elm)->field.le_prev = (elm)->field.le_next; \ QUEUEDEBUG_LIST_POSTREMOVE((elm), field) \} while (/*CONSTCOND*/0)#define LIST_FOREACH(var, head, field) \ for ((var) = ((head)->lh_first); \ (var); \ (var) = ((var)->field.le_next))/* * List access methods. */#define LIST_EMPTY(head) ((head)->lh_first == NULL)#define LIST_FIRST(head) ((head)->lh_first)#define LIST_NEXT(elm, field) ((elm)->field.le_next)/* * Singly-linked List definitions. */#define SLIST_HEAD(name, type) \struct name { \ struct type *slh_first; /* first element */ \}#define SLIST_HEAD_INITIALIZER(head) \ { NULL } #define SLIST_ENTRY(type) \struct { \ struct type *sle_next; /* next element */ \} /* * Singly-linked List functions. */#define SLIST_INIT(head) do { \ (head)->slh_first = NULL; \} while (/*CONSTCOND*/0)#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ (elm)->field.sle_next = (slistelm)->field.sle_next; \ (slistelm)->field.sle_next = (elm); \} while (/*CONSTCOND*/0)#define SLIST_INSERT_HEAD(head, elm, field) do { \ (elm)->field.sle_next = (head)->slh_first; \ (head)->slh_first = (elm); \} while (/*CONSTCOND*/0)#define SLIST_REMOVE_HEAD(head, field) do { \ (head)->slh_first = (head)->slh_first->field.sle_next; \} while (/*CONSTCOND*/0)#define SLIST_REMOVE(head, elm, type, field) do { \ if ((head)->slh_first == (elm)) { \ SLIST_REMOVE_HEAD((head), field); \ } \ else { \ struct type *curelm = (head)->slh_first; \ while(curelm->field.sle_next != (elm)) \ curelm = curelm->field.sle_next; \ curelm->field.sle_next = \ curelm->field.sle_next->field.sle_next; \ } \} while (/*CONSTCOND*/0)#define SLIST_FOREACH(var, head, field) \ for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)/* * Singly-linked List access methods. */#define SLIST_EMPTY(head) ((head)->slh_first == NULL)#define SLIST_FIRST(head) ((head)->slh_first)#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)/* * Singly-linked Tail queue declarations. */#define STAILQ_HEAD(name, type) \struct name { \ struct type *stqh_first; /* first element */ \ struct type **stqh_last; /* addr of last next element */ \}#define STAILQ_HEAD_INITIALIZER(head) \ { NULL, &(head).stqh_first }#define STAILQ_ENTRY(type) \struct { \ struct type *stqe_next; /* next element */ \}/* * Singly-linked Tail queue functions. */#define STAILQ_INIT(head) do { \ (head)->stqh_first = NULL; \ (head)->stqh_last = &(head)->stqh_first; \} while (/*CONSTCOND*/0)#define STAILQ_INSERT_HEAD(head, elm, field) do { \ if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \ (head)->stqh_last = &(elm)->field.stqe_next; \ (head)->stqh_first = (elm); \} while (/*CONSTCOND*/0)#define STAILQ_INSERT_TAIL(head, elm, field) do { \ (elm)->field.stqe_next = NULL; \ *(head)->stqh_last = (elm); \ (head)->stqh_last = &(elm)->field.stqe_next; \} while (/*CONSTCOND*/0)#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\ (head)->stqh_last = &(elm)->field.stqe_next; \ (listelm)->field.stqe_next = (elm); \} while (/*CONSTCOND*/0)#define STAILQ_REMOVE_HEAD(head, field) do { \ if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \ (head)->stqh_last = &(head)->stqh_first; \} while (/*CONSTCOND*/0)#define STAILQ_REMOVE(head, elm, type, field) do { \ if ((head)->stqh_first == (elm)) { \ STAILQ_REMOVE_HEAD((head), field); \ } else { \ struct type *curelm = (head)->stqh_first; \ while (curelm->field.stqe_next != (elm)) \ curelm = curelm->field.stqe_next; \ if ((curelm->field.stqe_next = \ curelm->field.stqe_next->field.stqe_next) == NULL) \ (head)->stqh_last = &(curelm)->field.stqe_next; \ } \} while (/*CONSTCOND*/0)#define STAILQ_FOREACH(var, head, field) \ for ((var) = ((head)->stqh_first); \ (var); \ (var) = ((var)->field.stqe_next))/* * Singly-linked Tail queue access methods. */#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)#define STAILQ_FIRST(head) ((head)->stqh_first)#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -