📄 gppopulation.java
字号:
/*
* This file is part of JGAP.
*
* JGAP offers a dual license model containing the LGPL as well as the MPL.
*
* For licencing information please see the file license.txt included with JGAP
* or have a look at the top of class org.jgap.Chromosome which representatively
* includes the JGAP license policy applicable for any file delivered with JGAP.
*/
package org.jgap.gp.impl;
import java.io.*;
import java.util.*;
import org.jgap.*;
import org.jgap.gp.*;
/**
* Population for GP programs.
*
* @author Klaus Meffert
* @since 3.0
*/
public class GPPopulation
implements Serializable, Comparable {
/** String containing the CVS revision. Read out via reflection!*/
private final static String CVS_REVISION = "$Revision: 1.3 $";
/**
* The array of GPProgram's that makeup the Genotype's population.
*/
private IGPProgram[] m_programs;
private transient float[] m_fitnessRank;
private int m_popSize;
private transient IGPProgram m_fittestProgram;
private /*transient*/ GPConfiguration m_config;
/**
* Indicates whether at least one of the programs has been changed
* (deleted, added, modified).
*/
private boolean m_changed;
/**
* Indicates that the list of GPPrograms has been sorted.
*/
private boolean m_sorted;
/*
* @param a_config the configuration to use.
* @param a_size the maximum size of the population in GPProgram unit
* @author Klaus Meffert
* @since 3.0
*/
public GPPopulation(GPConfiguration a_config, int a_size)
throws InvalidConfigurationException {
if (a_config == null) {
throw new InvalidConfigurationException("Configuration must not be null!");
}
m_config = a_config;
m_programs = new GPProgram[a_size];
m_popSize = a_size;
m_fitnessRank = new float[a_size];
for (int i = 0; i < a_size; i++) {
m_fitnessRank[i] = 0.5f;
}
}
/*
* @author Klaus Meffert
* @since 3.0
*/
public GPPopulation(GPPopulation a_pop)
throws InvalidConfigurationException {
m_config = a_pop.getGPConfiguration();
m_popSize = a_pop.getPopSize();
m_programs = new GPProgram[m_popSize];
m_fitnessRank = new float[m_popSize];
for (int i = 0; i < m_popSize; i++) {
m_fitnessRank[i] = 0.5f;
}
}
/**
* Sorts the population into "ascending" order using some criterion for
* "ascending". A Comparator is given which will compare two individuals,
* and if one individual compares lower than another individual, the first
* individual will appear in the population before the second individual.
*
* @param c the Comparator to use
*
* @author Klaus Meffert
* @since 3.0
*/
public void sort(Comparator c) {
Arrays.sort(m_programs, c);
float f = 0;
for (int i = 0; i < m_programs.length; i++) {
m_fitnessRank[i] = f;
f += m_programs[i].getFitnessValue();
}
}
/**
* Creates a population using the ramped half-and-half method. Adapted from
* JGProg.
*
* @param a_types the type for each chromosome, the length of the array
* represents the number of chromosomes
* @param a_argTypes the types of the arguments to each chromosome, must be an
* array of arrays, the first dimension of which is the number of chromosomes
* and the second dimension of which is the number of arguments to the
* chromosome
* @param a_nodeSets the nodes which are allowed to be used by each chromosome,
* must be an array of arrays, the first dimension of which is the number of
* chromosomes and the second dimension of which is the number of nodes
* @param a_minDepths contains the minimum depth allowed for each chromosome
* @param a_maxDepths contains the maximum depth allowed for each chromosome
* @param a_maxNodes reserve space for a_maxNodes number of nodes
* @param a_fullModeAllowed array of boolean values. For each chromosome there
* is one value indicating whether the full mode for creating chromosome
* generations during evolution is allowed (true) or not (false)
* @throws InvalidConfigurationException
*
* @author Klaus Meffert
* @since 3.0
*/
public void create(Class[] a_types, Class[][] a_argTypes,
CommandGene[][] a_nodeSets, int[] a_minDepths,
int[] a_maxDepths, int a_maxNodes,
boolean[] a_fullModeAllowed)
throws InvalidConfigurationException {
int divisor;
if (m_popSize < 2) {
divisor = 1;
}
else {
divisor = m_popSize - 1;
}
for (int i = 0; i < m_popSize; i++) {
// Vary depth dependent on run index.
// ----------------------------------
int depth = 2 +
(getGPConfiguration().getMaxInitDepth() - 1) * i / divisor;
IGPProgram program = create(a_types, a_argTypes, a_nodeSets, a_minDepths,
a_maxDepths, depth, (i % 2) == 0, a_maxNodes,
a_fullModeAllowed);
setGPProgram(i, program);
}
setChanged(true);
}
/**
* Creates a complete, valid ProgramChromosome.
*
* @param a_types the type of each chromosome, the length
* is the number of chromosomes
* @param a_argTypes the types of the arguments to each chromosome, must be an
* array of arrays, the first dimension of which is the number of chromosomes
* and the second dimension of which is the number of arguments to the
* chromosome
* @param a_nodeSets the nodes which are allowed to be used by each chromosome,
* must be an array of arrays, the first dimension of which is the number of
* chromosomes and the second dimension of which is the number of nodes
* @param a_minDepths contains the minimum depth allowed for each chromosome
* @param a_maxDepths contains the maximum depth allowed for each chromosome
* @param a_depth the maximum depth of the program to create
* @param a_grow true: grow mode, false: full mode
* @param a_maxNodes reserve space for a_maxNodes number of nodes
* @param a_fullModeAllowed array of boolean values. For each chromosome there
* is one value indicating whether the full mode for creating chromosome
* generations during evolution is allowed (true) or not (false)
* @return ProgramChromosome
* @throws InvalidConfigurationException
*
* @author Klaus Meffert
* @since 3.0
*/
public IGPProgram create(Class[] a_types, Class[][] a_argTypes,
CommandGene[][] a_nodeSets, int[] a_minDepths, int[] a_maxDepths,
int a_depth, boolean a_grow, int a_maxNodes,
boolean[] a_fullModeAllowed)
throws InvalidConfigurationException {
GPProgram program = new GPProgram(getGPConfiguration(), //a_types.length,
a_types, a_argTypes, a_nodeSets, a_minDepths,
a_maxDepths, a_maxNodes);
program.growOrFull(a_depth, /*a_types, a_argTypes, a_nodeSets, a_minDepths,
a_maxDepths, */a_grow, a_maxNodes, a_fullModeAllowed);
return program;
}
/**
* @return fixed size of the population
*
* @author Klaus Meffert
* @since 3.0
*/
public int getPopSize() {
return m_popSize;
}
/**
* @return the GPConfiguration set
*
* @author Klaus Meffert
* @since 3.0
*/
public GPConfiguration getGPConfiguration() {
return m_config;
}
/**
* Sets the given GPProgram at the given index in the list of GPProgram's.
* If the given index is exceeding the list by one, the chromosome is
* appended.
*
* @param a_index the index to set the GPProgram in
* @param a_program the GPProgram to be set
*
* @author Klaus Meffert
* @since 3.0
*/
public void setGPProgram(final int a_index, final IGPProgram a_program) {
synchronized(m_programs) {
m_programs[a_index] = a_program;
}
setChanged(true);
}
public IGPProgram getGPProgram(int a_index) {
return m_programs[a_index];
}
public IGPProgram[] getGPPrograms() {
return m_programs;
}
public int size() {
return m_programs.length;
}
/**
* Determines the fittest GPProgram in the population (the one with the
* highest fitness value) and memorizes it. This is an optimized version
* compared to calling determineFittesPrograms(1).
* @return the fittest GPProgram of the population
*
* @author Klaus Meffert
* @since 3.0
*/
public IGPProgram determineFittestProgram() {
if (!m_changed && m_fittestProgram != null) {
return m_fittestProgram;
}
double bestFitness = -1.0d;
FitnessEvaluator evaluator = getGPConfiguration().getFitnessEvaluator();
double fitness;
for (int i=0;i<m_programs.length && m_programs[i] != null;i++) {
IGPProgram program = m_programs[i];
fitness = program.getFitnessValue();
if (evaluator.isFitter(fitness, bestFitness)
|| m_fittestProgram == null) {
m_fittestProgram = program;
bestFitness = fitness;
}
}
setChanged(false);
return m_fittestProgram;
}
/**
* Sorts the GPPrograms list and returns the fittest n GPPrograms in
* the population.
* @param a_numberOfPrograms number of top performer GPPrograms to be
* returned
* @return list of the fittest n GPPrograms of the population, or the fittest
* x GPPrograms with x = number of GPPrograms in case n > x.
*
* @author Klaus Meffert
* @since 3.0
*/
public List determineFittestChromosomes(final int a_numberOfPrograms) {
int numberOfChromosomes = Math.min(a_numberOfPrograms, m_programs.length);
if (numberOfChromosomes <= 0) {
return null;
}
if (!m_changed && m_sorted) {
return Arrays.asList(m_programs).subList(0, numberOfChromosomes);
}
// Sort the list of chromosomes using the fitness comparator
sortByFitness();
// Return the top n chromosomes
return Arrays.asList(m_programs).subList(0, numberOfChromosomes);
}
/**
* Sorts the programs within the population according to their fitness
* value using GPProgramFitnessComparator.
*
* @author Klaus Meffert
* @since 3.0
*/
public void sortByFitness() {
// The following construction could be cached but wrt that the
// evaluator registered with the configuration could change
// --> Don't cache it!
sort(new GPProgramFitnessComparator(getGPConfiguration().
getGPFitnessEvaluator()));
setChanged(false);
setSorted(true);
m_fittestProgram = m_programs[0];
}
public float[] getFitnessRanks() {
return m_fitnessRank;
}
public float getFitnessRank(int a_index) {
return m_fitnessRank[a_index];
}
/**
* Mark that for the population the fittest program may have changed.
*
* @param a_changed true: population's fittest program may have changed,
* false: fittest program evaluated earlier is still valid
*
* @author Klaus Meffert
* @since 3.0
*/
protected void setChanged(final boolean a_changed) {
m_changed = a_changed;
setSorted(false);
}
/**
* @return true: population's programs (maybe) were changed,
* false: not changed for sure
*
* @since 3.0
*/
public boolean isChanged() {
return m_changed;
}
/**
* Mark the population as sorted.
* @param a_sorted true: mark population as sorted
*
* @author Klaus Meffert
* @since 3.0
*/
protected void setSorted(final boolean a_sorted) {
m_sorted = a_sorted;
}
/**
* This method is not producing symmetric results as -1 is more often returned
* than 1 (see description of return value).
*
* @param a_pop the other population to compare
* @return 1: a_pop is null or having fewer programs or equal number
* of programs but at least one not contained. 0: both populations
* containing exactly the same programs. -1: this population contains fewer
* programs than a_pop
*
* @author Klaus Meffert
* @since 2.6
*/
public int compareTo(Object a_pop) {
GPPopulation other = (GPPopulation) a_pop;
if (a_pop == null) {
return 1;
}
int size1 = size();
int size2 = other.size();
if (size1 != size2) {
if (size1 < size2) {
return -1;
}
else {
return 1;
}
}
IGPProgram[] progs2 = other.getGPPrograms();
for (int i = 0; i < size1; i++) {
if (!containedInArray(progs2, m_programs[i])) {
return 1;
}
}
return 0;
}
/**
* Checks if a program is contained within an array of programs. Assumes that
* in the array no element will follow after the first null element.
* @param a_progs the array to search thru
* @param a_prog the program to find
* @return true: program found in array via equals-method
*
* @author Klaus Meffert
* @since 3.0
*/
protected boolean containedInArray(IGPProgram[] a_progs, IGPProgram a_prog) {
for(int i=0;i<a_progs.length;i++) {
if (a_progs[i] == null) {
return false;
}
if (a_progs[i].equals(a_prog)) {
return true;
}
}
return false;
}
/**
* The equals-method.
* @param a_pop the population instance to compare with
* @return true: given object equal to comparing one
*
* @author Klaus Meffert
* @since 3.0
*/
public boolean equals(Object a_pop) {
try {
return compareTo(a_pop) == 0;
}
catch (ClassCastException e) {
// If the other object isn't an Population instance
// then we're not equal.
// ------------------------------------------------
return false;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -