⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 knapsackmain.java

📁 JGAP(发音"jay-gap")是一款用Java编写的遗传算法包。提供了基本的遗传算法.你可以使用它来解决一些适用于遗传算法解决的问题.
💻 JAVA
字号:
/*
 * This file is part of JGAP.
 *
 * JGAP offers a dual license model containing the LGPL as well as the MPL.
 *
 * For licencing information please see the file license.txt included with JGAP
 * or have a look at the top of class org.jgap.Chromosome which representatively
 * includes the JGAP license policy applicable for any file delivered with JGAP.
 */
package examples.knapsack;

import java.io.*;
import org.jgap.*;
import org.jgap.data.*;
import org.jgap.impl.*;
import org.jgap.xml.*;
import org.w3c.dom.*;

/**
 * This class provides an implementation of the classic knapsack problem
 * using a genetic algorithm. The goal of the problem is to reach a given
 * volume (of a knapsack) by putting a number of items into the knapsack.
 * The closer the sum of the item volumes to the given volume the better.
 * <p>
 * For further descriptions, compare the "coins" example also provided.
 *
 * @author Klaus Meffert
 * @since 2.3
 */
public class KnapsackMain {
  /** String containing the CVS revision. Read out via reflection!*/
  private final static String CVS_REVISION = "$Revision: 1.9 $";

  /**
   * The total number of times we'll let the population evolve.
   */
  private static final int MAX_ALLOWED_EVOLUTIONS = 140;

  /** Volumes of arbitrary items in ccm*/
  public final static double[] itemVolumes = {
      50.2d, 14.8d, 27.5d, 6800.0d, 25.0d, 4.75d, 95.36d, 1500.7d, 18365.9d,
      83571.1d};

  /** Names of arbitrary items, only for outputting something imaginable*/
  public final static String[] itemNames = {
      "Torch", "Banana", "Miniradio", "TV", "Gameboy", "Small thingie",
      "Medium thingie", "Big thingie", "Huge thingie", "Gigantic thingie"};

  /**
   * Executes the genetic algorithm to determine the minimum number of
   * items necessary to make up the given target volume. The solution will then
   * be written to the console.
   *
   * @param a_knapsackVolume the target volume for which this method is
   * attempting to produce the optimal list of items
   *
   * @throws Exception
   *
   * @author Klaus Meffert
   * @since 2.3
   */
  public static void findItemsForVolume(double a_knapsackVolume)
      throws Exception {
    // Start with a DefaultConfiguration, which comes setup with the
    // most common settings.
    // -------------------------------------------------------------
    Configuration conf = new DefaultConfiguration();
    conf.setPreservFittestIndividual(true);
    // Set the fitness function we want to use. We construct it with
    // the target volume passed in to this method.
    // ---------------------------------------------------------
    FitnessFunction myFunc =
        new KnapsackFitnessFunction(a_knapsackVolume);
    conf.setFitnessFunction(myFunc);
    // Now we need to tell the Configuration object how we want our
    // Chromosomes to be setup. We do that by actually creating a
    // sample Chromosome and then setting it on the Configuration
    // object. As mentioned earlier, we want our Chromosomes to each
    // have as many genes as there are different items available. We want the
    // values (alleles) of those genes to be integers, which represent
    // how many items of that type we have. We therefore use the
    // IntegerGene class to represent each of the genes. That class
    // also lets us specify a lower and upper bound, which we set
    // to senseful values (i.e. maximum possible) for each item type.
    // --------------------------------------------------------------
    Gene[] sampleGenes = new Gene[itemVolumes.length];
    for (int i = 0; i < itemVolumes.length; i++) {
      sampleGenes[i] = new IntegerGene(conf, 0,
                                       (int) Math.ceil(a_knapsackVolume /
          itemVolumes[i]));
    }
    IChromosome sampleChromosome = new Chromosome(conf, sampleGenes);
    conf.setSampleChromosome(sampleChromosome);
    // Finally, we need to tell the Configuration object how many
    // Chromosomes we want in our population. The more Chromosomes,
    // the larger number of potential solutions (which is good for
    // finding the answer), but the longer it will take to evolve
    // the population (which could be seen as bad).
    // ------------------------------------------------------------
    conf.setPopulationSize(50);
    // Create random initial population of Chromosomes.
    // Here we try to read in a previous run via XMLManager.readFile(..)
    // for demonstration purpose!
    // -----------------------------------------------------------------
    Genotype population;
    try {
      Document doc = XMLManager.readFile(new File("knapsackJGAP.xml"));
      population = XMLManager.getGenotypeFromDocument(conf, doc);
    }
    catch (FileNotFoundException fex) {
      population = Genotype.randomInitialGenotype(conf);
    }
    population = Genotype.randomInitialGenotype(conf);
    // Evolve the population. Since we don't know what the best answer
    // is going to be, we just evolve the max number of times.
    // ---------------------------------------------------------------
    for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) {
      population.evolve();
    }
    // Save progress to file. A new run of this example will then be able to
    // resume where it stopped before!
    // ---------------------------------------------------------------------

    // represent Genotype as tree with elements Chromomes and Genes
    // ------------------------------------------------------------
    DataTreeBuilder builder = DataTreeBuilder.getInstance();
    IDataCreators doc2 = builder.representGenotypeAsDocument(population);
    // create XML document from generated tree
    // ---------------------------------------
    XMLDocumentBuilder docbuilder = new XMLDocumentBuilder();
    Document xmlDoc = (Document) docbuilder.buildDocument(doc2);
    XMLManager.writeFile(xmlDoc, new File("knapsackJGAP.xml"));
    // Display the best solution we found.
    // -----------------------------------
    IChromosome bestSolutionSoFar = population.getFittestChromosome();
    System.out.println("The best solution has a fitness value of " +
                       bestSolutionSoFar.getFitnessValue());
    System.out.println("It contained the following: ");
    int count;
    double totalVolume = 0.0d;
    for (int i = 0; i < bestSolutionSoFar.size(); i++) {
      count = ( (Integer) bestSolutionSoFar.getGene(i).getAllele()).intValue();
      if (count > 0) {
        System.out.println("\t " + count + " x " + itemNames[i]);
        totalVolume += itemVolumes[i] * count;
      }
    }
    System.out.println("\nFor a total volume of " + totalVolume + " ccm");
    System.out.println("Expected volume was " + a_knapsackVolume + " ccm");
    System.out.println("Volume difference is " +
                       Math.abs(totalVolume - a_knapsackVolume) + " ccm");
  }

  /**
   * Main method. A single command-line argument is expected, which is the
   * volume to create (in other words, 75 would be equal to 75 ccm).
   *
   * @param args first and single element in the array = volume of the knapsack
   * to fill as a double value
   *
   * @author Klaus Meffert
   * @since 2.3
   */
  public static void main(String[] args) {
    if (args.length != 1) {
      System.out.println("Syntax: " + KnapsackMain.class.getName() +
                         " <volume>");
    }
    else {
      try {
        double volume = Double.parseDouble(args[0]);
        if (volume < 1 ||
            volume >= KnapsackFitnessFunction.MAX_BOUND) {
          System.out.println("The <volume> argument must be between 1 and "
                             +
                             (KnapsackFitnessFunction.MAX_BOUND - 1)
                             + " and can be a decimal.");
        }
        else {
          try {
            findItemsForVolume(volume);
          }
          catch (Exception e) {
            e.printStackTrace();
          }
        }
      }
      catch (NumberFormatException e) {
        System.out.println(
            "The <volume> argument must be a valid double value");
      }
    }
  }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -