📄 ofdm_fading.m
字号:
%BPSK
function [per,ber]=ofdm_fading(ebn0)
%********************** preparation part ***************************
para=128; % Number of parallel channel to transmit (points)
fftlen=128; % FFT length
noc=128; % Number of carrier
nd=6; % Number of information OFDM symbol for one loop
ml=1; % Number of modulation levels:BPSK
sr=250000; % Symbol rate
br=sr.*ml; % Bit rate per carrier
gilen=32; % Length of guard interval (points)
ebn0=10;
%******************* Fading initialization ********************
% If you use fading function "sefade", you can initialize all of parameters.
% Otherwise you can comment out the following initialization.
% The detailed explanation of all of valiables are mentioned in Program 2-8.
% Time resolution
tstp=1/sr/(fftlen+gilen);
% Arrival time for each multipath normalized by tstp
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
itau = [0];
% Mean power for each multipath normalized by direct wave.
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
dlvl = [0];
% Number of waves to generate fading for each multipath.
% In normal case, more than six waves are needed to generate Rayleigh fading
n0=[6];
% Initial Phase of delayed wave
% In this simulation four-path Rayleigh fading are considered.
th1=[0.0];
% Number of fading counter to skip
itnd0=nd*(fftlen+gilen)*10;
% Initial value of fading counter
% In this simulation one-path Rayleigh fading are considered.
% Therefore one fading counter are needed.
itnd1=[1000];
% Number of directwave + Number of delayed wave
% In this simulation one-path Rayleigh fading are considered
now1=1;
% Maximum Doppler frequency [Hz]
% You can insert your favorite value
fd=320;
% You can decide two mode to simulate fading by changing the variable flat
% flat : flat fading or not
% (1->flat (only amplitude is fluctuated),0->nomal(phase and amplitude are fluctutated)
flat =1;
%************************** main loop part **************************
nloop=100;
noe = 0; % Number of error data
nod = 0; % Number of transmitted data
eop=0; % Number of error packet
nop=0; % Number of transmitted packet
n=1;
for iii=1:nloop
%************************** transmitter *********************************
%************************** Data generation ****************************
seldata=rand(1,para*nd*ml)>0.5; % rand : built in function
%****************** Serial to parallel conversion ***********************
paradata=reshape(seldata,para,nd*ml); % reshape : built in function
%************************** BPSK modulation *****************************
data1=2*paradata-1;
kmod=1/sqrt(2); % sqrt : built in function
x=data1.*kmod;
%******************* IFFT ************************
y=ifft(x); % ifft : built in function
idata2=real(y);
qdata2=imag(y);
%********* Gurad interval insertion **********
[idata3,qdata3]= giins(idata2,qdata2,fftlen,gilen,nd);
fftlen2=fftlen+gilen;
%********* Attenuation Calculation *********
spow=sum(idata3.^2+qdata3.^2)/nd./para; % sum : built in function
attn=0.5*spow*sr/br*10.^(-ebn0/10);
attn=sqrt(attn);
%********************** Fading channel **********************
% Generated data are fed into a fading simulator
[ifade,qfade]=sefade(idata3,qdata3,itau,dlvl,th1,n0,itnd1,now1,length(idata3),tstp,fd,flat);
% Updata fading counter
itnd1 = itnd1+ itnd0;
%*************************** Receiver *****************************
%***************** AWGN addition *********
[idata4,qdata4]=comb(ifade,qfade,attn);
%****************** Guard interval removal *********
[idata5,qdata5]= girem(idata4,qdata4,fftlen2,gilen,nd);
%****************** FFT ******************
rx=idata5+qdata5.*i;
ry=fft(rx);
data6=real(ry); % fft : built in function
%***************** demoduration *******************
data7=data6./kmod;
demodata=data7>0;
%************** Parallel to serial conversion *****************
demodata1=reshape(demodata,1,para*nd*ml);
%************************** Bit Error Rate (BER) ****************************
% instantaneous number of error and data
noe2=sum(abs(demodata1-seldata)); % sum : built in function
nod2=length(seldata); % length : built in function
% cumulative the number of error and data in noe and nod
noe=noe+noe2;
nod=nod+nod2;
% calculating PER
if noe2~=0
eop=eop+1;
else
eop=eop;
end
eop;
nop=nop+1;
fprintf('%d\t%e\t%d\n',n,noe2/nod2,eop); % fprintf : built in function
n=n+1;
end
%********************** Output result ***************************
per=eop/nop;
ber=noe/nod;
fprintf('per= %d ber= %d\n',per,ber);
%******************** end of file ***************************
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -