⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 penaltyconstrainedminimizer.java

📁 Standord Classifier实现了一个基于Java的最大熵分类器。用于模式识别
💻 JAVA
字号:
package edu.stanford.nlp.optimization;/** * A wrapper class which builds a constrained minimizer out of an * unconstrained one by finding the unconstrained minimum of a * sequence of penalized surfaces.  It assumes that the objective it * is given is a <code>DiffFunction</code>, even if the base * unconstrained minimzer just ignores the derivative information. * * The desired unconstrained minimizer is passed in on construction: * * <code>Minimizer m = new SomeUnconstrainedMinimizer();</code> * <code>ConstrainedMinimizer cm = new PenaltyConstrainedMinimizer(m);</code> * * @author <a href="mailto:klein@cs.stanford.edu">Dan Klein</a> * @version 1.0 * @since 1.0 * @see ConstrainedMinimizer */public class PenaltyConstrainedMinimizer implements ConstrainedMinimizer {  private Minimizer minimizer;  private boolean silent = true;  class PenalizedFunction implements DiffFunction {    DiffFunction function;    DiffFunction[] eqConstraints;    double[] eqLagrange;    double[] eqPenalties;    DiffFunction[] ineqConstraints;    double[] ineqLagrange;    double[] ineqPenalties;    public int domainDimension() {      return function.domainDimension();    }    public double valueAt(double[] x) {      double val = 0.0;      val += function.valueAt(x);      // equality constraints      for (int i=0; i<eqConstraints.length; i++) {	double c = eqConstraints[i].valueAt(x);	val += eqLagrange[i]*c;	val += 0.5*eqPenalties[i]*c*c;      }      // inequality constraints      for (int i=0; i<ineqConstraints.length; i++) {	double c = ineqConstraints[i].valueAt(x);	//val += Math.exp(-1.0*ineqPenalties[i]*c);	double tmp = fmax(c,2.0*c+ineqLagrange[i]/ineqPenalties[i]);	val += ineqLagrange[i]*tmp;	val += 0.5*ineqPenalties[i]*tmp*tmp;	//val += (tmp2*tmp2 - ineqLagrange[i]*ineqLagrange[i])/2.0*ineqPenalties[i];      }      return val;    }    public double[] derivativeAt(double[] x) {      double[] deriv = copyArray(function.derivativeAt(x));      // equality constraints      for (int i=0; i<eqConstraints.length; i++) {	double[] cDeriv = eqConstraints[i].derivativeAt(x);	double cVal = eqConstraints[i].valueAt(x);	for (int d=0; d<domainDimension(); d++) {	  deriv[d] += eqLagrange[i]*cDeriv[d];	  deriv[d] += eqPenalties[i]*cVal*cDeriv[d];	}      }      // inequality constraints      for (int i=0; i<ineqConstraints.length; i++) {	double[] cDeriv = ineqConstraints[i].derivativeAt(x);	double cVal = ineqConstraints[i].valueAt(x);	for (int d=0; d<domainDimension(); d++) {	  //deriv[d] += ineqLagrange[i]*cDeriv[d];	  //deriv[d] += -1.0*ineqPenalties[i]*Math.exp(-1.0*ineqPenalties[i]*cVal)*cDeriv[d];	  //deriv[d] += (cVal > 0 ? 0 : ineqPenalties[i]*cVal*cDeriv[d]);	  double tmp = cVal;	  double tmpD = cDeriv[d];	  double crit = cVal + ineqLagrange[i]/ineqPenalties[i];	  if (crit > 0) {	    tmp += crit;	    tmpD += cDeriv[d];	  }	  deriv[d] += ineqLagrange[i]*tmpD;	  deriv[d] += ineqPenalties[i]*tmp*tmpD;	}      }      return deriv;    }    PenalizedFunction(Function function, Function[] eqConstraints, double[] eqLagrange, double[] eqPenalties, Function[] ineqConstraints, double[] ineqLagrange, double[] ineqPenalties) {      this.function = (DiffFunction)function;      this.eqConstraints = (DiffFunction[])eqConstraints;      this.eqLagrange = eqLagrange;      this.eqPenalties = eqPenalties;      this.ineqConstraints = (DiffFunction[])ineqConstraints;      this.ineqLagrange = ineqLagrange;      this.ineqPenalties = ineqPenalties;    }  }  double[] copyArray(double[] a) {    double[] result = new double[a.length];    for(int i=0;i<a.length;i++)      result[i]=a[i];    return result;  }  private double arrayMax(double[] x) {    double max = Double.NEGATIVE_INFINITY;    for (int i=0; i<x.length; i++) {      if (max < x[i])	max = x[i];    }    return max;  }  private double fabs(double x) {    if (x<0)      return -1.0*x;    return x;  }  private double fmax(double x, double y) {    if (x<y)      return y;    return x;  }  private String arrayToString(double[] x) {    StringBuffer sb = new StringBuffer("(");    for (int j=0; j<x.length; j++) {      sb.append(x[j]);      if (j != x.length-1)	sb.append(", ");    }    sb.append(")");    return sb.toString();  }  public double[] minimize(Function function, double functionTolerance, Function[] eqConstraints, double eqConstraintTolerance, Function[] ineqConstraints, double ineqConstraintTolerance, double[] initial) {    int dimension = function.domainDimension();    int numEqConstraints = eqConstraints.length;    int numIneqConstraints = ineqConstraints.length;    // check that the function is a DiffFunction    if (! (function instanceof DiffFunction))      throw new UnsupportedOperationException();    // check the constraints    for (int i=0; i<numEqConstraints; i++) {      if (! (eqConstraints[i] instanceof DiffFunction))	throw new UnsupportedOperationException();    }    for (int i=0; i<numIneqConstraints; i++) {      if (! (ineqConstraints[i] instanceof DiffFunction))	throw new UnsupportedOperationException();    }    // use a penalty method to solve for the lagrange multipliers and the x    double[] eqLagrange = new double[numEqConstraints];    double[] eqPenalties = new double[numEqConstraints];    for (int i=0; i<numEqConstraints; i++) {      eqLagrange[i] = 0;      eqPenalties[i] = 1.0;    }    double[] ineqLagrange = new double[numIneqConstraints];    double[] ineqPenalties = new double[numIneqConstraints];    for (int i=0; i<numIneqConstraints; i++) {      ineqLagrange[i] = 0;      ineqPenalties[i] = 1.0;    }    double worstEqViolation = 1.0+2.0*eqConstraintTolerance;    double worstIneqViolation = 1.0+2.0*ineqConstraintTolerance;    double lastWorstEqViolation = 10*worstEqViolation;    double lastWorstIneqViolation = 10*worstIneqViolation;    int iter = 0;    double[] x = copyArray(initial);    // do a series of penalized minimizations    boolean lowTolIter = false;    while (iter < 100 && 	   (worstEqViolation > eqConstraintTolerance ||	    worstIneqViolation > ineqConstraintTolerance ||	    !lowTolIter)) {      if (worstEqViolation <= eqConstraintTolerance &&	  worstIneqViolation <= ineqConstraintTolerance) {	lowTolIter = true;      } else {	lowTolIter = false;      }      // build a penalized surface      DiffFunction penalizedFunction = new PenalizedFunction(function, eqConstraints, eqLagrange, eqPenalties, ineqConstraints, ineqLagrange, ineqPenalties);      // minimize it      double thisTol = (lowTolIter ? functionTolerance : Math.sqrt(functionTolerance));      x = minimizer.minimize(penalizedFunction, thisTol, x);      penalizedFunction.derivativeAt(x);      // update lagrange multipliers and penalties      // EQUALITY CONSTRAINTS      lastWorstEqViolation = worstEqViolation;      worstEqViolation = Double.NEGATIVE_INFINITY;      double[] eqViolations = new double[numEqConstraints];      double[] eqValues = new double[numEqConstraints];      for (int i=0; i<numEqConstraints; i++) {	eqValues[i] = eqConstraints[i].valueAt(x);	eqViolations[i] = fabs(eqValues[i]);      }      worstEqViolation = arrayMax(eqViolations);      // update penalties and lagrange multipliers      for (int i=0; i<numEqConstraints; i++) {	// lagrange multipliers should take over the forces previously	// exerted by the penalty terms	eqLagrange[i] += eqPenalties[i]*eqValues[i];	// penalties increase more or less based on violation severity	if (eqViolations[i] >= worstEqViolation/2.0 &&	    worstEqViolation >= eqConstraintTolerance)	  eqPenalties[i] *= 1.0;//*= 1.2;	else	  eqPenalties[i] *= 1.0;//*= 2.0;	// penalties also increase if constraint satisfaction is too slow	if (worstEqViolation / (lastWorstEqViolation + 1e-100) > 0.25 &&	    worstEqViolation >= eqConstraintTolerance)	  eqPenalties[i] *= 5.0;      }      if (! silent)	System.err.println("!e "+arrayMax(eqPenalties)+"/"+worstEqViolation+"!");      // INEQUALTIY CONSTRAINTS      lastWorstIneqViolation = worstIneqViolation;      worstIneqViolation = Double.NEGATIVE_INFINITY;      double[] ineqViolations = new double[numIneqConstraints];      double[] ineqValues = new double[numIneqConstraints];      for (int i=0; i<numIneqConstraints; i++) {	// ineq violations can be < 0 constraint values OR	//   >= 0 constraints with non-zero lagrange multipliers / penalties	double cVal = ineqConstraints[i].valueAt(x);	ineqValues[i] = cVal;	ineqViolations[i] = ((cVal < 0 ? -1.0*cVal : 0)+fabs(ineqLagrange[i]*cVal));      }      worstIneqViolation = fmax(0.0,arrayMax(ineqViolations));      // update penalties and lagrange multipliers      for (int i=0; i<numIneqConstraints; i++) {	// lagrange multipliers should take over the forces previously	// exerted by the penalty terms ... sort of	double crit =  ineqValues[i] + ineqLagrange[i]/ineqPenalties[i];	if (crit > 0)	  ineqLagrange[i] += ineqPenalties[i]*crit;	ineqLagrange[i] += ineqPenalties[i]*ineqValues[i];	if (ineqLagrange[i] > 0)	  ineqLagrange[i] = 0;	// penalties increase more or less based on violation severity	if (ineqViolations[i] >= worstIneqViolation/2.0 &&	    worstIneqViolation >= ineqConstraintTolerance)	  ineqPenalties[i] *= 1.0;//+= 0.2;	else	  ineqPenalties[i] *= 1.0;//+= 1.0;	// penalties also increase if constraint satisfaction is too slow	if (worstIneqViolation / (lastWorstIneqViolation + 1e-100) > 0.25 &&	    worstIneqViolation >= ineqConstraintTolerance)	  ineqPenalties[i] *= 5.0;      }      if (! silent)	System.err.println("!i "+arrayMax(ineqPenalties)+"/"+worstIneqViolation+"!");    }    return copyArray(x);  }  public double[] minimize(Function function, double functionTolerance, double[] initial) {    return minimizer.minimize(function, functionTolerance, initial);  }  public PenaltyConstrainedMinimizer(Minimizer minimizer) {    this.minimizer = minimizer;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -