📄 mhmm_em.m
字号:
function [LL, prior, transmat, mu, Sigma, mixmat] = ... mhmm_em(data, prior, transmat, mu, Sigma, mixmat, varargin);% LEARN_MHMM Compute the ML parameters of an HMM with (mixtures of) Gaussians output using EM.% [ll_trace, prior, transmat, mu, sigma, mixmat] = learn_mhmm(data, ...% prior0, transmat0, mu0, sigma0, mixmat0, ...) %% Notation: Q(t) = hidden state, Y(t) = observation, M(t) = mixture variable%% INPUTS:% data{ex}(:,t) or data(:,t,ex) if all sequences have the same length% prior(i) = Pr(Q(1) = i), % transmat(i,j) = Pr(Q(t+1)=j | Q(t)=i)% mu(:,j,k) = E[Y(t) | Q(t)=j, M(t)=k ]% Sigma(:,:,j,k) = Cov[Y(t) | Q(t)=j, M(t)=k]% mixmat(j,k) = Pr(M(t)=k | Q(t)=j) : set to [] or ones(Q,1) if only one mixture component%% Optional parameters may be passed as 'param_name', param_value pairs.% Parameter names are shown below; default values in [] - if none, argument is mandatory.%% 'max_iter' - max number of EM iterations [10]% 'thresh' - convergence threshold [1e-4]% 'verbose' - if 1, print out loglik at every iteration [1]% 'cov_type' - 'full', 'diag' or 'spherical' ['full']%% To clamp some of the parameters, so learning does not change them:% 'adj_prior' - if 0, do not change prior [1]% 'adj_trans' - if 0, do not change transmat [1]% 'adj_mix' - if 0, do not change mixmat [1]% 'adj_mu' - if 0, do not change mu [1]% 'adj_Sigma' - if 0, do not change Sigma [1]%% If the number of mixture components differs depending on Q, just set the trailing% entries of mixmat to 0, e.g., 2 components if Q=1, 3 components if Q=2,% then set mixmat(1,3)=0. In this case, B2(1,3,:)=1.0.if ~isempty(varargin) & ~isstr(varargin{1}) % catch old syntax error('optional arguments should be passed as string/value pairs')end[max_iter, thresh, verbose, cov_type, adj_prior, adj_trans, adj_mix, adj_mu, adj_Sigma] = ... process_options(varargin, 'max_iter', 10, 'thresh', 1e-4, 'verbose', 1, ... 'cov_type', 'full', 'adj_prior', 1, 'adj_trans', 1, 'adj_mix', 1, ... 'adj_mu', 1, 'adj_Sigma', 1); previous_loglik = -inf;loglik = 0;converged = 0;num_iter = 1;LL = [];if ~iscell(data) data = num2cell(data, [1 2]); % each elt of the 3rd dim gets its own cellendnumex = length(data);O = size(data{1},1);Q = length(prior);if isempty(mixmat) mixmat = ones(Q,1);endM = size(mixmat,2);if M == 1 adj_mix = 0;endwhile (num_iter <= max_iter) & ~converged % E step [loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ... ess_mhmm(prior, transmat, mixmat, mu, Sigma, data); % M step if adj_prior prior = normalise(exp_num_visits1); end if adj_trans transmat = mk_stochastic(exp_num_trans); end if adj_mix mixmat = mk_stochastic(postmix); end if adj_mu | adj_Sigma [mu2, Sigma2] = mixgauss_Mstep(postmix, m, op, ip, 'cov_type', cov_type); if adj_mu mu = reshape(mu2, [O Q M]); end if adj_Sigma Sigma = reshape(Sigma2, [O O Q M]); end end if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end num_iter = num_iter + 1; converged = em_converged(loglik, previous_loglik, thresh); previous_loglik = loglik; LL = [LL loglik];end%%%%%%%%%function [loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ... ess_mhmm(prior, transmat, mixmat, mu, Sigma, data)% ESS_MHMM Compute the Expected Sufficient Statistics for a MOG Hidden Markov Model.%% Outputs:% exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(Q(t-1) = i, Q(t) = j| Obs(l))% exp_num_visits1(i) = sum_l Pr(Q(1)=i | Obs(l))%% Let w(i,k,t,l) = P(Q(t)=i, M(t)=k | Obs(l))% where Obs(l) = Obs(:,:,l) = O_1 .. O_T for sequence l% Then % postmix(i,k) = sum_l sum_t w(i,k,t,l) (posterior mixing weights/ responsibilities)% m(:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l)% ip(i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l)' * Obs(:,t,l)% op(:,:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l) * Obs(:,t,l)'verbose = 0;%[O T numex] = size(data);numex = length(data);O = size(data{1},1);Q = length(prior);M = size(mixmat,2);exp_num_trans = zeros(Q,Q);exp_num_visits1 = zeros(Q,1);postmix = zeros(Q,M);m = zeros(O,Q,M);op = zeros(O,O,Q,M);ip = zeros(Q,M);mix = (M>1);loglik = 0;if verbose, fprintf(1, 'forwards-backwards example # '); endfor ex=1:numex if verbose, fprintf(1, '%d ', ex); end %obs = data(:,:,ex); obs = data{ex}; T = size(obs,2); if mix [B, B2] = mixgauss_prob(obs, mu, Sigma, mixmat); [alpha, beta, gamma, current_loglik, xi_summed, gamma2] = ... fwdback(prior, transmat, B, 'obslik2', B2, 'mixmat', mixmat); else B = mixgauss_prob(obs, mu, Sigma); [alpha, beta, gamma, current_loglik, xi_summed] = fwdback(prior, transmat, B); end loglik = loglik + current_loglik; if verbose, fprintf(1, 'll at ex %d = %f\n', ex, loglik); end exp_num_trans = exp_num_trans + xi_summed; % sum(xi,3); exp_num_visits1 = exp_num_visits1 + gamma(:,1); if mix postmix = postmix + sum(gamma2,3); else postmix = postmix + sum(gamma,2); gamma2 = reshape(gamma, [Q 1 T]); % gamma2(i,m,t) = gamma(i,t) end for i=1:Q for k=1:M w = reshape(gamma2(i,k,:), [1 T]); % w(t) = w(i,k,t,l) wobs = obs .* repmat(w, [O 1]); % wobs(:,t) = w(t) * obs(:,t) m(:,i,k) = m(:,i,k) + sum(wobs, 2); % m(:) = sum_t w(t) obs(:,t) op(:,:,i,k) = op(:,:,i,k) + wobs * obs'; % op(:,:) = sum_t w(t) * obs(:,t) * obs(:,t)' ip(i,k) = ip(i,k) + sum(sum(wobs .* obs, 2)); % ip = sum_t w(t) * obs(:,t)' * obs(:,t) end endendif verbose, fprintf(1, '\n'); end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -