⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multi_cpu_2c35.v

📁 altera的fpga设计
💻 V
📖 第 1 页 / 共 5 页
字号:

  assign wait_for_button_pio_s1_counter = 0;
  //assign button_pio_s1_irq_from_sa = button_pio_s1_irq so that symbol knows where to group signals which may go to master only, which is an e_assign
  assign button_pio_s1_irq_from_sa = button_pio_s1_irq;


endmodule



// turn off superfluous verilog processor warnings 
// altera message_level Level1 
// altera message_off 10034 10035 10036 10037 10230 10240 10030 

module clock_0_in_arbitrator (
                               // inputs:
                                clk,
                                clock_0_in_endofpacket,
                                clock_0_in_readdata,
                                clock_0_in_waitrequest,
                                cpu1_data_master_address_to_slave,
                                cpu1_data_master_byteenable,
                                cpu1_data_master_read,
                                cpu1_data_master_waitrequest,
                                cpu1_data_master_write,
                                cpu1_data_master_writedata,
                                reset_n,

                               // outputs:
                                clock_0_in_address,
                                clock_0_in_byteenable,
                                clock_0_in_endofpacket_from_sa,
                                clock_0_in_nativeaddress,
                                clock_0_in_read,
                                clock_0_in_readdata_from_sa,
                                clock_0_in_reset_n,
                                clock_0_in_waitrequest_from_sa,
                                clock_0_in_write,
                                clock_0_in_writedata,
                                cpu1_data_master_granted_clock_0_in,
                                cpu1_data_master_qualified_request_clock_0_in,
                                cpu1_data_master_read_data_valid_clock_0_in,
                                cpu1_data_master_requests_clock_0_in,
                                d1_clock_0_in_end_xfer
                             )
  /* synthesis auto_dissolve = "FALSE" */ ;

  output  [  3: 0] clock_0_in_address;
  output  [  1: 0] clock_0_in_byteenable;
  output           clock_0_in_endofpacket_from_sa;
  output  [  2: 0] clock_0_in_nativeaddress;
  output           clock_0_in_read;
  output  [ 15: 0] clock_0_in_readdata_from_sa;
  output           clock_0_in_reset_n;
  output           clock_0_in_waitrequest_from_sa;
  output           clock_0_in_write;
  output  [ 15: 0] clock_0_in_writedata;
  output           cpu1_data_master_granted_clock_0_in;
  output           cpu1_data_master_qualified_request_clock_0_in;
  output           cpu1_data_master_read_data_valid_clock_0_in;
  output           cpu1_data_master_requests_clock_0_in;
  output           d1_clock_0_in_end_xfer;
  input            clk;
  input            clock_0_in_endofpacket;
  input   [ 15: 0] clock_0_in_readdata;
  input            clock_0_in_waitrequest;
  input   [ 26: 0] cpu1_data_master_address_to_slave;
  input   [  3: 0] cpu1_data_master_byteenable;
  input            cpu1_data_master_read;
  input            cpu1_data_master_waitrequest;
  input            cpu1_data_master_write;
  input   [ 31: 0] cpu1_data_master_writedata;
  input            reset_n;

  wire    [  3: 0] clock_0_in_address;
  wire             clock_0_in_allgrants;
  wire             clock_0_in_allow_new_arb_cycle;
  wire             clock_0_in_any_continuerequest;
  wire             clock_0_in_arb_counter_enable;
  reg     [  2: 0] clock_0_in_arb_share_counter;
  wire    [  2: 0] clock_0_in_arb_share_counter_next_value;
  wire    [  2: 0] clock_0_in_arb_share_set_values;
  wire             clock_0_in_beginbursttransfer_internal;
  wire             clock_0_in_begins_xfer;
  wire    [  1: 0] clock_0_in_byteenable;
  wire             clock_0_in_end_xfer;
  wire             clock_0_in_endofpacket_from_sa;
  wire             clock_0_in_firsttransfer;
  wire             clock_0_in_grant_vector;
  wire             clock_0_in_in_a_read_cycle;
  wire             clock_0_in_in_a_write_cycle;
  wire             clock_0_in_master_qreq_vector;
  wire    [  2: 0] clock_0_in_nativeaddress;
  wire             clock_0_in_non_bursting_master_requests;
  wire             clock_0_in_read;
  wire    [ 15: 0] clock_0_in_readdata_from_sa;
  wire             clock_0_in_reset_n;
  reg              clock_0_in_slavearbiterlockenable;
  wire             clock_0_in_slavearbiterlockenable2;
  wire             clock_0_in_waitrequest_from_sa;
  wire             clock_0_in_waits_for_read;
  wire             clock_0_in_waits_for_write;
  wire             clock_0_in_write;
  wire    [ 15: 0] clock_0_in_writedata;
  wire             cpu1_data_master_arbiterlock;
  wire             cpu1_data_master_arbiterlock2;
  wire             cpu1_data_master_continuerequest;
  wire             cpu1_data_master_granted_clock_0_in;
  wire             cpu1_data_master_qualified_request_clock_0_in;
  wire             cpu1_data_master_read_data_valid_clock_0_in;
  wire             cpu1_data_master_requests_clock_0_in;
  wire             cpu1_data_master_saved_grant_clock_0_in;
  reg              d1_clock_0_in_end_xfer;
  reg              d1_reasons_to_wait;
  wire             in_a_read_cycle;
  wire             in_a_write_cycle;
  wire             wait_for_clock_0_in_counter;
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          d1_reasons_to_wait <= 0;
      else if (1)
          d1_reasons_to_wait <= ~clock_0_in_end_xfer;
    end


  assign clock_0_in_begins_xfer = ~d1_reasons_to_wait & ((cpu1_data_master_qualified_request_clock_0_in));
  //assign clock_0_in_readdata_from_sa = clock_0_in_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign
  assign clock_0_in_readdata_from_sa = clock_0_in_readdata;

  assign cpu1_data_master_requests_clock_0_in = ({cpu1_data_master_address_to_slave[26 : 5] , 5'b0} == 27'h1011060) & (cpu1_data_master_read | cpu1_data_master_write);
  //assign clock_0_in_waitrequest_from_sa = clock_0_in_waitrequest so that symbol knows where to group signals which may go to master only, which is an e_assign
  assign clock_0_in_waitrequest_from_sa = clock_0_in_waitrequest;

  //clock_0_in_arb_share_counter set values, which is an e_mux
  assign clock_0_in_arb_share_set_values = 1;

  //clock_0_in_non_bursting_master_requests mux, which is an e_mux
  assign clock_0_in_non_bursting_master_requests = cpu1_data_master_requests_clock_0_in;

  //clock_0_in_arb_share_counter_next_value assignment, which is an e_assign
  assign clock_0_in_arb_share_counter_next_value = clock_0_in_firsttransfer ? (clock_0_in_arb_share_set_values - 1) : |clock_0_in_arb_share_counter ? (clock_0_in_arb_share_counter - 1) : 0;

  //clock_0_in_allgrants all slave grants, which is an e_mux
  assign clock_0_in_allgrants = |clock_0_in_grant_vector;

  //clock_0_in_end_xfer assignment, which is an e_assign
  assign clock_0_in_end_xfer = ~(clock_0_in_waits_for_read | clock_0_in_waits_for_write);

  //clock_0_in_arb_share_counter arbitration counter enable, which is an e_assign
  assign clock_0_in_arb_counter_enable = (clock_0_in_end_xfer & clock_0_in_allgrants) | (clock_0_in_end_xfer & ~clock_0_in_non_bursting_master_requests);

  //clock_0_in_arb_share_counter counter, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          clock_0_in_arb_share_counter <= 0;
      else if (clock_0_in_arb_counter_enable)
          clock_0_in_arb_share_counter <= clock_0_in_arb_share_counter_next_value;
    end


  //clock_0_in_slavearbiterlockenable slave enables arbiterlock, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          clock_0_in_slavearbiterlockenable <= 0;
      else if ((|clock_0_in_master_qreq_vector & clock_0_in_end_xfer) | (clock_0_in_end_xfer & ~clock_0_in_non_bursting_master_requests))
          clock_0_in_slavearbiterlockenable <= |clock_0_in_arb_share_counter_next_value;
    end


  //cpu1/data_master clock_0/in arbiterlock, which is an e_assign
  assign cpu1_data_master_arbiterlock = clock_0_in_slavearbiterlockenable & cpu1_data_master_continuerequest;

  //clock_0_in_slavearbiterlockenable2 slave enables arbiterlock2, which is an e_assign
  assign clock_0_in_slavearbiterlockenable2 = |clock_0_in_arb_share_counter_next_value;

  //cpu1/data_master clock_0/in arbiterlock2, which is an e_assign
  assign cpu1_data_master_arbiterlock2 = clock_0_in_slavearbiterlockenable2 & cpu1_data_master_continuerequest;

  //clock_0_in_any_continuerequest at least one master continues requesting, which is an e_assign
  assign clock_0_in_any_continuerequest = 1;

  //cpu1_data_master_continuerequest continued request, which is an e_assign
  assign cpu1_data_master_continuerequest = 1;

  assign cpu1_data_master_qualified_request_clock_0_in = cpu1_data_master_requests_clock_0_in & ~((cpu1_data_master_read & (~cpu1_data_master_waitrequest)) | ((~cpu1_data_master_waitrequest) & cpu1_data_master_write));
  //clock_0_in_writedata mux, which is an e_mux
  assign clock_0_in_writedata = cpu1_data_master_writedata;

  //assign clock_0_in_endofpacket_from_sa = clock_0_in_endofpacket so that symbol knows where to group signals which may go to master only, which is an e_assign
  assign clock_0_in_endofpacket_from_sa = clock_0_in_endofpacket;

  //master is always granted when requested
  assign cpu1_data_master_granted_clock_0_in = cpu1_data_master_qualified_request_clock_0_in;

  //cpu1/data_master saved-grant clock_0/in, which is an e_assign
  assign cpu1_data_master_saved_grant_clock_0_in = cpu1_data_master_requests_clock_0_in;

  //allow new arb cycle for clock_0/in, which is an e_assign
  assign clock_0_in_allow_new_arb_cycle = 1;

  //placeholder chosen master
  assign clock_0_in_grant_vector = 1;

  //placeholder vector of master qualified-requests
  assign clock_0_in_master_qreq_vector = 1;

  //clock_0_in_reset_n assignment, which is an e_assign
  assign clock_0_in_reset_n = reset_n;

  //clock_0_in_firsttransfer first transaction, which is an e_assign
  assign clock_0_in_firsttransfer = ~(clock_0_in_slavearbiterlockenable & clock_0_in_any_continuerequest);

  //clock_0_in_beginbursttransfer_internal begin burst transfer, which is an e_assign
  assign clock_0_in_beginbursttransfer_internal = clock_0_in_begins_xfer & clock_0_in_firsttransfer;

  //clock_0_in_read assignment, which is an e_mux
  assign clock_0_in_read = cpu1_data_master_granted_clock_0_in & cpu1_data_master_read;

  //clock_0_in_write assignment, which is an e_mux
  assign clock_0_in_write = cpu1_data_master_granted_clock_0_in & cpu1_data_master_write;

  //clock_0_in_address mux, which is an e_mux
  assign clock_0_in_address = cpu1_data_master_address_to_slave;

  //slaveid clock_0_in_nativeaddress nativeaddress mux, which is an e_mux
  assign clock_0_in_nativeaddress = cpu1_data_master_address_to_slave >> 2;

  //d1_clock_0_in_end_xfer register, which is an e_register
  always @(posedge clk or negedge reset_n)
    begin
      if (reset_n == 0)
          d1_clock_0_in_end_xfer <= 1;
      else if (1)
          d1_clock_0_in_end_xfer <= clock_0_in_end_xfer;
    end


  //clock_0_in_waits_for_read in a cycle, which is an e_mux
  assign clock_0_in_waits_for_read = clock_0_in_in_a_read_cycle & clock_0_in_waitrequest_from_sa;

  //clock_0_in_in_a_read_cycle assignment, which is an e_assign

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -