📄 multi_cpu_2c35.v
字号:
assign wait_for_button_pio_s1_counter = 0;
//assign button_pio_s1_irq_from_sa = button_pio_s1_irq so that symbol knows where to group signals which may go to master only, which is an e_assign
assign button_pio_s1_irq_from_sa = button_pio_s1_irq;
endmodule
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module clock_0_in_arbitrator (
// inputs:
clk,
clock_0_in_endofpacket,
clock_0_in_readdata,
clock_0_in_waitrequest,
cpu1_data_master_address_to_slave,
cpu1_data_master_byteenable,
cpu1_data_master_read,
cpu1_data_master_waitrequest,
cpu1_data_master_write,
cpu1_data_master_writedata,
reset_n,
// outputs:
clock_0_in_address,
clock_0_in_byteenable,
clock_0_in_endofpacket_from_sa,
clock_0_in_nativeaddress,
clock_0_in_read,
clock_0_in_readdata_from_sa,
clock_0_in_reset_n,
clock_0_in_waitrequest_from_sa,
clock_0_in_write,
clock_0_in_writedata,
cpu1_data_master_granted_clock_0_in,
cpu1_data_master_qualified_request_clock_0_in,
cpu1_data_master_read_data_valid_clock_0_in,
cpu1_data_master_requests_clock_0_in,
d1_clock_0_in_end_xfer
)
/* synthesis auto_dissolve = "FALSE" */ ;
output [ 3: 0] clock_0_in_address;
output [ 1: 0] clock_0_in_byteenable;
output clock_0_in_endofpacket_from_sa;
output [ 2: 0] clock_0_in_nativeaddress;
output clock_0_in_read;
output [ 15: 0] clock_0_in_readdata_from_sa;
output clock_0_in_reset_n;
output clock_0_in_waitrequest_from_sa;
output clock_0_in_write;
output [ 15: 0] clock_0_in_writedata;
output cpu1_data_master_granted_clock_0_in;
output cpu1_data_master_qualified_request_clock_0_in;
output cpu1_data_master_read_data_valid_clock_0_in;
output cpu1_data_master_requests_clock_0_in;
output d1_clock_0_in_end_xfer;
input clk;
input clock_0_in_endofpacket;
input [ 15: 0] clock_0_in_readdata;
input clock_0_in_waitrequest;
input [ 26: 0] cpu1_data_master_address_to_slave;
input [ 3: 0] cpu1_data_master_byteenable;
input cpu1_data_master_read;
input cpu1_data_master_waitrequest;
input cpu1_data_master_write;
input [ 31: 0] cpu1_data_master_writedata;
input reset_n;
wire [ 3: 0] clock_0_in_address;
wire clock_0_in_allgrants;
wire clock_0_in_allow_new_arb_cycle;
wire clock_0_in_any_continuerequest;
wire clock_0_in_arb_counter_enable;
reg [ 2: 0] clock_0_in_arb_share_counter;
wire [ 2: 0] clock_0_in_arb_share_counter_next_value;
wire [ 2: 0] clock_0_in_arb_share_set_values;
wire clock_0_in_beginbursttransfer_internal;
wire clock_0_in_begins_xfer;
wire [ 1: 0] clock_0_in_byteenable;
wire clock_0_in_end_xfer;
wire clock_0_in_endofpacket_from_sa;
wire clock_0_in_firsttransfer;
wire clock_0_in_grant_vector;
wire clock_0_in_in_a_read_cycle;
wire clock_0_in_in_a_write_cycle;
wire clock_0_in_master_qreq_vector;
wire [ 2: 0] clock_0_in_nativeaddress;
wire clock_0_in_non_bursting_master_requests;
wire clock_0_in_read;
wire [ 15: 0] clock_0_in_readdata_from_sa;
wire clock_0_in_reset_n;
reg clock_0_in_slavearbiterlockenable;
wire clock_0_in_slavearbiterlockenable2;
wire clock_0_in_waitrequest_from_sa;
wire clock_0_in_waits_for_read;
wire clock_0_in_waits_for_write;
wire clock_0_in_write;
wire [ 15: 0] clock_0_in_writedata;
wire cpu1_data_master_arbiterlock;
wire cpu1_data_master_arbiterlock2;
wire cpu1_data_master_continuerequest;
wire cpu1_data_master_granted_clock_0_in;
wire cpu1_data_master_qualified_request_clock_0_in;
wire cpu1_data_master_read_data_valid_clock_0_in;
wire cpu1_data_master_requests_clock_0_in;
wire cpu1_data_master_saved_grant_clock_0_in;
reg d1_clock_0_in_end_xfer;
reg d1_reasons_to_wait;
wire in_a_read_cycle;
wire in_a_write_cycle;
wire wait_for_clock_0_in_counter;
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
d1_reasons_to_wait <= 0;
else if (1)
d1_reasons_to_wait <= ~clock_0_in_end_xfer;
end
assign clock_0_in_begins_xfer = ~d1_reasons_to_wait & ((cpu1_data_master_qualified_request_clock_0_in));
//assign clock_0_in_readdata_from_sa = clock_0_in_readdata so that symbol knows where to group signals which may go to master only, which is an e_assign
assign clock_0_in_readdata_from_sa = clock_0_in_readdata;
assign cpu1_data_master_requests_clock_0_in = ({cpu1_data_master_address_to_slave[26 : 5] , 5'b0} == 27'h1011060) & (cpu1_data_master_read | cpu1_data_master_write);
//assign clock_0_in_waitrequest_from_sa = clock_0_in_waitrequest so that symbol knows where to group signals which may go to master only, which is an e_assign
assign clock_0_in_waitrequest_from_sa = clock_0_in_waitrequest;
//clock_0_in_arb_share_counter set values, which is an e_mux
assign clock_0_in_arb_share_set_values = 1;
//clock_0_in_non_bursting_master_requests mux, which is an e_mux
assign clock_0_in_non_bursting_master_requests = cpu1_data_master_requests_clock_0_in;
//clock_0_in_arb_share_counter_next_value assignment, which is an e_assign
assign clock_0_in_arb_share_counter_next_value = clock_0_in_firsttransfer ? (clock_0_in_arb_share_set_values - 1) : |clock_0_in_arb_share_counter ? (clock_0_in_arb_share_counter - 1) : 0;
//clock_0_in_allgrants all slave grants, which is an e_mux
assign clock_0_in_allgrants = |clock_0_in_grant_vector;
//clock_0_in_end_xfer assignment, which is an e_assign
assign clock_0_in_end_xfer = ~(clock_0_in_waits_for_read | clock_0_in_waits_for_write);
//clock_0_in_arb_share_counter arbitration counter enable, which is an e_assign
assign clock_0_in_arb_counter_enable = (clock_0_in_end_xfer & clock_0_in_allgrants) | (clock_0_in_end_xfer & ~clock_0_in_non_bursting_master_requests);
//clock_0_in_arb_share_counter counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
clock_0_in_arb_share_counter <= 0;
else if (clock_0_in_arb_counter_enable)
clock_0_in_arb_share_counter <= clock_0_in_arb_share_counter_next_value;
end
//clock_0_in_slavearbiterlockenable slave enables arbiterlock, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
clock_0_in_slavearbiterlockenable <= 0;
else if ((|clock_0_in_master_qreq_vector & clock_0_in_end_xfer) | (clock_0_in_end_xfer & ~clock_0_in_non_bursting_master_requests))
clock_0_in_slavearbiterlockenable <= |clock_0_in_arb_share_counter_next_value;
end
//cpu1/data_master clock_0/in arbiterlock, which is an e_assign
assign cpu1_data_master_arbiterlock = clock_0_in_slavearbiterlockenable & cpu1_data_master_continuerequest;
//clock_0_in_slavearbiterlockenable2 slave enables arbiterlock2, which is an e_assign
assign clock_0_in_slavearbiterlockenable2 = |clock_0_in_arb_share_counter_next_value;
//cpu1/data_master clock_0/in arbiterlock2, which is an e_assign
assign cpu1_data_master_arbiterlock2 = clock_0_in_slavearbiterlockenable2 & cpu1_data_master_continuerequest;
//clock_0_in_any_continuerequest at least one master continues requesting, which is an e_assign
assign clock_0_in_any_continuerequest = 1;
//cpu1_data_master_continuerequest continued request, which is an e_assign
assign cpu1_data_master_continuerequest = 1;
assign cpu1_data_master_qualified_request_clock_0_in = cpu1_data_master_requests_clock_0_in & ~((cpu1_data_master_read & (~cpu1_data_master_waitrequest)) | ((~cpu1_data_master_waitrequest) & cpu1_data_master_write));
//clock_0_in_writedata mux, which is an e_mux
assign clock_0_in_writedata = cpu1_data_master_writedata;
//assign clock_0_in_endofpacket_from_sa = clock_0_in_endofpacket so that symbol knows where to group signals which may go to master only, which is an e_assign
assign clock_0_in_endofpacket_from_sa = clock_0_in_endofpacket;
//master is always granted when requested
assign cpu1_data_master_granted_clock_0_in = cpu1_data_master_qualified_request_clock_0_in;
//cpu1/data_master saved-grant clock_0/in, which is an e_assign
assign cpu1_data_master_saved_grant_clock_0_in = cpu1_data_master_requests_clock_0_in;
//allow new arb cycle for clock_0/in, which is an e_assign
assign clock_0_in_allow_new_arb_cycle = 1;
//placeholder chosen master
assign clock_0_in_grant_vector = 1;
//placeholder vector of master qualified-requests
assign clock_0_in_master_qreq_vector = 1;
//clock_0_in_reset_n assignment, which is an e_assign
assign clock_0_in_reset_n = reset_n;
//clock_0_in_firsttransfer first transaction, which is an e_assign
assign clock_0_in_firsttransfer = ~(clock_0_in_slavearbiterlockenable & clock_0_in_any_continuerequest);
//clock_0_in_beginbursttransfer_internal begin burst transfer, which is an e_assign
assign clock_0_in_beginbursttransfer_internal = clock_0_in_begins_xfer & clock_0_in_firsttransfer;
//clock_0_in_read assignment, which is an e_mux
assign clock_0_in_read = cpu1_data_master_granted_clock_0_in & cpu1_data_master_read;
//clock_0_in_write assignment, which is an e_mux
assign clock_0_in_write = cpu1_data_master_granted_clock_0_in & cpu1_data_master_write;
//clock_0_in_address mux, which is an e_mux
assign clock_0_in_address = cpu1_data_master_address_to_slave;
//slaveid clock_0_in_nativeaddress nativeaddress mux, which is an e_mux
assign clock_0_in_nativeaddress = cpu1_data_master_address_to_slave >> 2;
//d1_clock_0_in_end_xfer register, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
d1_clock_0_in_end_xfer <= 1;
else if (1)
d1_clock_0_in_end_xfer <= clock_0_in_end_xfer;
end
//clock_0_in_waits_for_read in a cycle, which is an e_mux
assign clock_0_in_waits_for_read = clock_0_in_in_a_read_cycle & clock_0_in_waitrequest_from_sa;
//clock_0_in_in_a_read_cycle assignment, which is an e_assign
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -