📄 rsa算法的c++源程序.txt
字号:
发信人: birdzxf.bbs@bbs.byr.edu.cn (我以前会飞的~), 信区: Security
标 题: [转录]RSA算法的C++源程序
发信站: 北邮人论坛 (Thu Nov 14 17:09:43 2002)
转信站: UESTC!news.happynet.org!BYR
※ 本文转录自 [Cracker] 看板
作者: can (罐头) 看板: Cracker
标题: RSA算法的C++源程序
时间: Mon Nov 11 09:41:02 2002
1.rsa.cpp
#include "rsa.hpp"
class prime_factory
{
unsigned np;
unsigned *pl;
public:
prime_factory();
~prime_factory();
vlong find_prime( vlong & start );
};
// prime factory implementation
static int is_probable_prime( const vlong &p )
{
// Test based on Fermats theorem a**(p-1) = 1 mod p for prime p
// For 1000 bit numbers this can take quite a while
const rep = 4;
const unsigned any[rep] = { 2,3,5,7 };
for ( unsigned i=0; i<rep; i+=1 )
if ( modexp( any[i], p-1, p ) != 1 )
return 0;
return 1;
}
prime_factory::prime_factory()
{
np = 0;
unsigned NP = 200;
pl = new unsigned[NP];
// Initialise pl
unsigned SS = 8*NP; // Rough estimate to fill pl
char * b = new char[SS+1]; // one extra to stop search
for (unsigned i=0;i<=SS;i+=1) b[i] = 1;
unsigned p = 2;
while (1)
{
// skip composites
while ( b[p] == 0 ) p += 1;
if ( p == SS ) break;
pl[np] = p;
np += 1;
if ( np == NP ) break;
// cross off multiples
unsigned c = p*2;
while ( c < SS )
{
b[c] = 0;
c += p;
}
p += 1;
}
delete [] b;
}
prime_factory::~prime_factory()
{
delete [] pl;
}
vlong prime_factory::find_prime( vlong & start )
{
unsigned SS = 1000; // should be enough unless we are unlucky
char * b = new char[SS]; // bitset of candidate primes
unsigned tested = 0;
while (1)
{
unsigned i;
for (i=0;i<SS;i+=1)
b[i] = 1;
for (i=0;i<np;i+=1)
{
unsigned p = pl[i];
unsigned r = start % p; // not as fast as it should be - could do with sp
ecial routine
if (r) r = p - r;
// cross off multiples of p
while ( r < SS )
{
b[r] = 0;
r += p;
}
}
// now test candidates
for (i=0;i<SS;i+=1)
{
if ( b[i] )
{
tested += 1;
if ( is_probable_prime(start) )
return start;
}
start += 1;
}
}
delete [] b;
}
static vlong from_str( const char * s )
{
vlong x = 0;
while (*s)
{
x = x * 256 + (unsigned char)*s;
s += 1;
}
return x;
}
void private_key::create( const char * r1, const char * r2 )
{
// Choose primes
{
prime_factory pf;
p = pf.find_prime( from_str(r1) );
q = pf.find_prime( from_str(r2) );
if ( p > q ) { vlong tmp = p; p = q; q = tmp; }
}
// Calculate public key
{
m = p*q;
e = 50001; // must be odd since p-1 and q-1 are even
while ( gcd(p-1,e) != 1 || gcd(q-1,e) != 1 ) e += 2;
}
}
vlong public_key::encrypt( const vlong& plain )
{
return modexp( plain, e, m );
}
vlong private_key::decrypt( const vlong& cipher )
{
// Calculate values for performing decryption
// These could be cached, but the calculation is quite fast
vlong d = modinv( e, (p-1)*(q-1) );
vlong u = modinv( p, q );
vlong dp = d % (p-1);
vlong dq = d % (q-1);
// Apply chinese remainder theorem
vlong a = modexp( cipher % p, dp, p );
vlong b = modexp( cipher % q, dq, q );
if ( b < a ) b += q;
return a + p * ( ((b-a)*u) % q );
}
2.RSA.HPP
// RSA public key encryption
#include "vlong.hpp"
class public_key
{
public:
vlong m,e;
vlong encrypt( const vlong& plain ); // Requires 0 <= plain < m
};
class private_key : public public_key
{
public:
vlong p,q;
vlong decrypt( const vlong& cipher );
void create( const char * r1, const char * r2 );
// r1 and r2 should be null terminated random strings
// each of length around 35 characters (for a 500 bit modulus)
};
3.vlong.hpp
class vlong // very long integer - can be used like long
{
public:
// Standard arithmetic operators
friend vlong operator +( const vlong& x, const vlong& y );
friend vlong operator -( const vlong& x, const vlong& y );
friend vlong operator *( const vlong& x, const vlong& y );
friend vlong operator /( const vlong& x, const vlong& y );
friend vlong operator %( const vlong& x, const vlong& y );
vlong& operator +=( const vlong& x );
vlong& operator -=( const vlong& x );
// Standard comparison operators
friend inline int operator !=( const vlong& x, const vlong& y ){ return x.cf( y
) != 0; }
friend inline int operator ==( const vlong& x, const vlong& y ){ return x.cf( y
) == 0; }
friend inline int operator >=( const vlong& x, const vlong& y ){ return x.cf( y
) >= 0; }
friend inline int operator <=( const vlong& x, const vlong& y ){ return x.cf(
y ) <= 0; }
friend inline int operator > ( const vlong& x, const vlong& y ){ return x.cf(
y ) > 0; }
friend inline int operator < ( const vlong& x, const vlong& y ){ return x.cf(
y ) < 0; }
// Construction and conversion operations
vlong ( unsigned x=0 );
vlong ( const vlong& x );
~vlong();
operator unsigned ();
vlong& operator =(const vlong& x);
private:
class vlong_value * value;
int negative;
int cf( const vlong x ) const;
void docopy();
friend class monty;
};
vlong modexp( const vlong & x, const vlong & e, const vlong & m ); // m must be
odd
vlong gcd( const vlong &X, const vlong &Y ); // greatest common denominator
vlong modinv( const vlong &a, const vlong &m ); // modular inverse
.vlong.cpp
class vlong_value;
#include "vlong.hpp"
class flex_unit // Provides storage allocation and index checking
{
unsigned * a; // array of units
unsigned z; // units allocated
public:
unsigned n; // used units (read-only)
flex_unit();
~flex_unit();
void clear(); // set n to zero
unsigned get( unsigned i ) const; // get ith unsigned
void set( unsigned i, unsigned x ); // set ith unsigned
void reserve( unsigned x ); // storage hint
// Time critical routine
void fast_mul( flex_unit &x, flex_unit &y, unsigned n );
};
class vlong_value : public flex_unit
{
public:
unsigned share; // share count, used by vlong to delay physical copying
int is_zero() const;
int test( unsigned i ) const;
unsigned bits() const;
int cf( vlong_value& x ) const;
void shl();
void shr();
void shr( unsigned n );
void add( vlong_value& x );
void subtract( vlong_value& x );
void init( unsigned x );
void copy( vlong_value& x );
operator unsigned(); // Unsafe conversion to unsigned
vlong_value();
void mul( vlong_value& x, vlong_value& y );
void divide( vlong_value& x, vlong_value& y, vlong_value& rem );
};
unsigned flex_unit::get( unsigned i ) const
{
if ( i >= n ) return 0;
return a[i];
}
void flex_unit::clear()
{
n = 0;
}
flex_unit::flex_unit()
{
z = 0;
a = 0;
n = 0;
}
flex_unit::~flex_unit()
{
unsigned i=z;
while (i) { i-=1; a[i] = 0; } // burn
delete [] a;
}
void flex_unit::reserve( unsigned x )
{
if (x > z)
{
unsigned * na = new unsigned[x];
for (unsigned i=0;i<n;i+=1) na[i] = a[i];
delete [] a;
a = na;
z = x;
}
}
void flex_unit::set( unsigned i, unsigned x )
{
if ( i < n )
{
a[i] = x;
if (x==0) while (n && a[n-1]==0) n-=1; // normalise
}
else if ( x )
{
reserve(i+1);
for (unsigned j=n;j<i;j+=1) a[j] = 0;
a[i] = x;
n = i+1;
}
}
// Macros for doing double precision multiply
#define BPU ( 8*sizeof(unsigned) ) // Number of bits in an unsigned
#define lo(x) ( (x) & ((1<<(BPU/2))-1) ) // lower half of unsigned
#define hi(x) ( (x) >> (BPU/2) ) // upper half
#define lh(x) ( (x) << (BPU/2) ) // make upper half
void flex_unit::fast_mul( flex_unit &x, flex_unit &y, unsigned keep )
{
// *this = (x*y) % (2**keep)
unsigned i,limit = (keep+BPU-1)/BPU; // size of result in words
reserve(limit); for (i=0; i<limit; i+=1) a[i] = 0;
unsigned min = x.n; if (min>limit) min = limit;
for (i=0; i<min; i+=1)
{
unsigned m = x.a[i];
unsigned c = 0; // carry
unsigned min = i+y.n; if (min>limit) min = limit;
for ( unsigned j=i; j<min; j+=1 )
{
// This is the critical loop
// Machine dependent code could help here
// c:a[j] = a[j] + c + m*y.a[j-i];
unsigned w, v = a[j], p = y.a[j-i];
v += c; c = ( v < c );
w = lo(p)*lo(m); v += w; c += ( v < w );
w = lo(p)*hi(m); c += hi(w); w = lh(w); v += w; c += ( v < w );
w = hi(p)*lo(m); c += hi(w); w = lh(w); v += w; c += ( v < w );
c += hi(p) * hi(m);
a[j] = v;
}
while ( c && j<limit )
{
a[j] += c;
c = a[j] < c;
j += 1;
}
}
// eliminate unwanted bits
keep %= BPU; if (keep) a[limit-1] &= (1<<keep)-1;
// calculate n
while (limit && a[limit-1]==0) limit-=1;
n = limit;
};
vlong_value::operator unsigned()
{
return get(0);
}
int vlong_value::is_zero() const
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -