⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bldc_1_sinusoidal.c

📁 用C语言编写的S函数源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/*  File    : stspace.c
 *  Abstract:
 *
 *      Example mex file S-function for state-space system.
 *
 *      Implements a set of state-space equations.
 *      You can turn this into a new block by using the
 *      S-function block and Mask facility.
 *
 *      This example MEX-file performs the same function
 *      as the built-in State-space block. This is an
 *      example of a MEX-file where the number of inputs,
 *      outputs, and states is dependent on the parameters
 *      passed in from the workspace.
 *
 *      Syntax  [sys, x0] = stspace(t,x,u,flag,A,B,C,D,X0)
 *
 *      For more details about S-functions, see simulink/src/sfuntmpl_doc.c
 *
 *  Copyright 1990-2002 The MathWorks, Inc.
 *  $Revision: 1.12 $
 */

#define S_FUNCTION_NAME bldc_1_sinusoidal
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"
#include "math.h"


#define R_IDX 0  //motor phase resister
#define R_PARAM(S) ssGetSFcnParam(S,R_IDX)
 
#define L_IDX 1  //motor phase self inductance
#define L_PARAM(S) ssGetSFcnParam(S,L_IDX)

#define M_IDX 2  //motor phase mutual inductance
#define M_PARAM(S) ssGetSFcnParam(S,M_IDX)
 
#define Ke_IDX 3  //motor back_EMF coefficient
#define Ke_PARAM(S) ssGetSFcnParam(S,Ke_IDX)

#define X0_IDX 4  //initial value of the system states,4-dimensional vector
#define X0_PARAM(S) ssGetSFcnParam(S,X0_IDX)

#define P_IDX 5  //number of poles
#define P_PARAM(S) ssGetSFcnParam(S,P_IDX)

#define J_IDX 6  //drive inertia
#define J_PARAM(S) ssGetSFcnParam(S,J_IDX)

#define NPARAMS 7
#define NSTATES 5  //iab,iac,ibc,electrical ratating speed in rad/s,electrical angle of the rotor

const real_T delta=0.0001;
const real_T pai=3.14159;

real_T   flag = 0;
unsigned char commu_flag = 1;
real_T   VAB;
real_T   VAC;
real_T   VBC;
real_T   Vsg;  //motor Y neutral point
real_T   Vag;  
real_T   Vbg;  
real_T   Vcg;  
/*====================*
 * S-function methods *
 *====================*/
#define MDL_CHECK_PARAMETERS
#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)
  /* Function: mdlCheckParameters =============================================
   * Abstract:
   *    Validate our parameters to verify they are okay.
   */
static void mdlCheckParameters(SimStruct *S)
{
	if(mxGetM(X0_PARAM(S))!=NSTATES)
	{
		ssSetErrorStatus(S,"the initial value of the states has been false dimensioned");
                return;
        }
}
#endif
/* Function: mdlInitializeSizes ===============================================
 * Abstract:
 *    The sizes information is used by Simulink to determine the S-function
 *    block's characteristics (number of inputs, outputs, states, etc.).
 */
static void mdlInitializeSizes(SimStruct *S)
{
    ssSetNumSFcnParams(S, NPARAMS);  /* Number of expected parameters */
#if defined(MATLAB_MEX_FILE)
    if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {
        
        if (ssGetErrorStatus(S) != NULL) {
            return;
        }
    } else {
        return; /* Parameter mismatch will be reported by Simulink */
    }
#endif

    ssSetNumContStates(S, NSTATES);
    ssSetNumDiscStates(S, 0);

    if (!ssSetNumInputPorts(S, 9)) return;//6 switching signals,Vs,TL, pwm signal and flux density
    /*The inverter DC Link voltage,Vs*/
    ssSetInputPortWidth(S, 0, 1);  
    /*The switching signals for S1 to S6 respectivly,named according to the convention*/
    ssSetInputPortWidth(S, 1, 1);
    ssSetInputPortWidth(S, 2, 1);
    ssSetInputPortWidth(S, 3, 1);
    ssSetInputPortWidth(S, 4, 1);
    ssSetInputPortWidth(S, 5, 1);
    ssSetInputPortWidth(S, 6, 1);
    /*Load torque on the motor shaft*/
    ssSetInputPortWidth(S, 7, 1);
    /*pwm signal*/
    ssSetInputPortWidth(S, 8, 1);
        
    /*set direct feedthru appearing in the system output*/
    ssSetInputPortDirectFeedThrough(S, 0, 0);
    ssSetInputPortDirectFeedThrough(S, 1, 1);
    ssSetInputPortDirectFeedThrough(S, 2, 1);
    ssSetInputPortDirectFeedThrough(S, 3, 1);
    ssSetInputPortDirectFeedThrough(S, 4, 1);
    ssSetInputPortDirectFeedThrough(S, 5, 1);
    ssSetInputPortDirectFeedThrough(S, 6, 1);
    ssSetInputPortDirectFeedThrough(S, 7, 0);
    ssSetInputPortDirectFeedThrough(S, 8, 1);   
    /*model output are phase currents and magnetoelectrical torque*/
    if (!ssSetNumOutputPorts(S, 12)) return;
    /*Magnetoelectrical torque*/
    ssSetOutputPortWidth(S, 0, 1);
    /*motor stator phase currents*/
    ssSetOutputPortWidth(S, 1, 1);
    ssSetOutputPortWidth(S, 2, 1);
    ssSetOutputPortWidth(S, 3, 1);
    /*motor electrical speed*/
    ssSetOutputPortWidth(S, 4, 1);
    /*motor 3 phase BEMF*/
    ssSetOutputPortWidth(S, 5, 1);
    ssSetOutputPortWidth(S, 6, 1);
    ssSetOutputPortWidth(S, 7, 1);
    /*observe the DC link current*/
    ssSetOutputPortWidth(S, 8, 1);
    /*observe the motor terminal voltage*/
    ssSetOutputPortWidth(S, 9, 1);
    ssSetOutputPortWidth(S, 10, 1);
    ssSetOutputPortWidth(S, 11, 1);
        
    ssSetNumSampleTimes(S, 1);
    /*
    ssSetNumRWork(S, 0);
    ssSetNumIWork(S, 0);
    ssSetNumPWork(S, 0);
    ssSetNumModes(S, 0);
    ssSetNumNonsampledZCs(S, 0);
           */
    /* Take care when specifying exception free code - see sfuntmpl_doc.c */
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
}



/* Function: mdlInitializeSampleTimes =========================================
 * Abstract:
 *    S-function is comprised of only continuous sample time elements
 */
static void mdlInitializeSampleTimes(SimStruct *S)
{
    ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
    ssSetOffsetTime(S, 0, 0.0);
}



#define MDL_INITIALIZE_CONDITIONS
/* Function: mdlInitializeConditions ========================================
 * Abstract:
 *    If the initial condition parameter (X0) is not an empty matrix,
 *    then use it to set up the initial conditions, otherwise,
 *    set the intial conditions to all 0.0
 */
static void mdlInitializeConditions(SimStruct *S)
{
    real_T *x0 = ssGetContStates(S);
    int_T  i , nStates;
    nStates = ssGetNumContStates(S);//get from simulink the number of continours states of the model
    
    if (mxGetM(X0_PARAM(S)) != 0)  //this parameter is not an empty matrix
        {
        	const real_T *pr = mxGetPr(X0_PARAM(S));
        	 for (i = 0; i < nStates; i++) 
        	 {
                     *x0++ = *pr++;
                 }
       }
     else  //this parameter is an empty matrix
       {
       for(i = 0; i < nStates; i++) 
          {
            *x0++ = 0.0;
          }	
       }
}



/* Function: mdlOutputs =======================================================
 * Abstract:
 *      
 */
static void mdlOutputs(SimStruct *S, int_T tid)
{
    real_T            *y0       = ssGetOutputPortRealSignal(S,0);
    real_T            *y1       = ssGetOutputPortRealSignal(S,1);
    real_T            *y2       = ssGetOutputPortRealSignal(S,2);
    real_T            *y3       = ssGetOutputPortRealSignal(S,3);
    real_T            *y4       = ssGetOutputPortRealSignal(S,4);
    real_T            *y5       = ssGetOutputPortRealSignal(S,5);
    real_T            *y6       = ssGetOutputPortRealSignal(S,6);
    real_T            *y7       = ssGetOutputPortRealSignal(S,7);
    real_T            *y8       = ssGetOutputPortRealSignal(S,8);
    real_T            *y9       = ssGetOutputPortRealSignal(S,9);
    real_T            *y10       = ssGetOutputPortRealSignal(S,10);
    real_T            *y11       = ssGetOutputPortRealSignal(S,11);
        
    real_T            *x       = ssGetContStates(S);
    
    InputRealPtrsType uPtrs1  = ssGetInputPortRealSignalPtrs(S,1);//S1
    InputRealPtrsType uPtrs2  = ssGetInputPortRealSignalPtrs(S,2);//S2
    InputRealPtrsType uPtrs3  = ssGetInputPortRealSignalPtrs(S,3);//S3
    InputRealPtrsType uPtrs4  = ssGetInputPortRealSignalPtrs(S,4);//S4
    InputRealPtrsType uPtrs5  = ssGetInputPortRealSignalPtrs(S,5);//S5
    InputRealPtrsType uPtrs6  = ssGetInputPortRealSignalPtrs(S,6);//S6
    InputRealPtrsType uPtrs8  = ssGetInputPortRealSignalPtrs(S,8);//pwm signal
    real_T             S1   = *uPtrs1[0];
    real_T             S2   = *uPtrs2[0];
    real_T             S3   = *uPtrs3[0];
    real_T             S4   = *uPtrs4[0];
    real_T             S5   = *uPtrs5[0];
    real_T             S6   = *uPtrs6[0];
    real_T             pwm  = *uPtrs8[0];
           
    const real_T      *Ke      = mxGetPr(Ke_PARAM(S));//back_EMF coefficient
    const real_T      *P       = mxGetPr(P_PARAM(S));//number of poles
    const real_T      *R       = mxGetPr(R_PARAM(S));//motor stator phase resistor
    const real_T      *L       = mxGetPr(L_PARAM(S));//motor stator phase self inductance
    const real_T      *M       = mxGetPr(M_PARAM(S));//motor stator mutual inductance
   
    real_T  	       B1   = sin(x[4])+(1/7.9)*sin(3*x[4]);
    real_T  	       B2   = sin(x[4]-2*pai/3)+(1/7.9)*sin(3*(x[4]-2*pai/3));
    real_T  	       B3   = sin(x[4]+2*pai/3)+(1/7.9)*sin(3*(x[4]+2*pai/3));
    
    real_T             ia   = (x[0]+x[1])/3;//phase a current
    real_T             ib   = (x[2]-x[0])/3;//phase b current
    real_T             ic   = (-1)*(x[1]+x[2])/3;//phase c current
    
    real_T             iah=0;//current flowing thru the high side switch and free-wheeling diode of phase a
    real_T             ibh=0;//current flowing thru the high side switch and free-wheeling diode of phase b
    real_T             ich=0;//current flowing thru the high side switch and free-wheeling diode of phase c
    if(S1==1) iah=ia;
    else if(S4==1&&pwm==1) iah=0;
         else if(S4==1&&pwm==0) iah=ia;
              else if(ia>0) iah=0;
    
    if(S3==1) ibh=ib;
    else if(S6==1&&pwm==1) ibh=0;
         else if(S6==1&&pwm==0) ibh=ib;
              else if(ib>0) ibh=0;
              
    if(S5==1) ich=ic;
    else if(S2==1&&pwm==1) ich=0;
         else if(S2==1&&pwm==0) ich=ic;
              else if(ic>0) ich=0;
       
        
    /*calculating stator phase currents*/     
    y1[0] = ia;  //stator phase A current
    y2[0] = ib;  //stator phase B current
    y3[0] = ic;  //stator phase C current
    /*calculating motor electrical speed*/
    y4[0] = x[3];
    /*calculating electrical torque*/
    y0[0] = P[0]*Ke[0]*((x[0]+x[1])*B1+(x[2]-x[0])*B2-(x[1]+x[2])*B3)/3;
    /*observe 3 phase BEMF*/
    y5[0] = Ke[0]*x[3]*B1/P[0];//phase a BEMF
    y6[0] = Ke[0]*x[3]*B2/P[0];//phase b BEMF
    y7[0] = Ke[0]*x[3]*B3/P[0];//phase c BEMF
    
    /*simulate the saturation function of the shunt current sense circuit*/
    if((iah+ibh+ich)<=0) y8[0]=0;
    else y8[0] = iah+ibh+ich;
    y9[0] = VAB;
    y10[0]= VAC;
    y11[0]= flag;
}



#define MDL_DERIVATIVES
/* Function: mdlDerivatives =================================================
 * Abstract:
 *      xdot = Ax + Bu
 */
static void mdlDerivatives(SimStruct *S)
{
    real_T            *dx     = ssGetdX(S);
    real_T            *x      = ssGetContStates(S);
    real_T            *y0     = ssGetOutputPortRealSignal(S,0);
    
   
    InputRealPtrsType uPtrs0  = ssGetInputPortRealSignalPtrs(S,0);//inverter DC-link voltage
    InputRealPtrsType uPtrs1  = ssGetInputPortRealSignalPtrs(S,1);//S1
    InputRealPtrsType uPtrs2  = ssGetInputPortRealSignalPtrs(S,2);//S2
    InputRealPtrsType uPtrs3  = ssGetInputPortRealSignalPtrs(S,3);//S3
    InputRealPtrsType uPtrs4  = ssGetInputPortRealSignalPtrs(S,4);//S4
    InputRealPtrsType uPtrs5  = ssGetInputPortRealSignalPtrs(S,5);//S5
    InputRealPtrsType uPtrs6  = ssGetInputPortRealSignalPtrs(S,6);//S6
    InputRealPtrsType uPtrs7  = ssGetInputPortRealSignalPtrs(S,7);//load torque on the motor shaft
    InputRealPtrsType uPtrs8  = ssGetInputPortRealSignalPtrs(S,8);//pwm signal
    
    const real_T      *R    = mxGetPr(R_PARAM(S));//motor stator phase resistor
    const real_T      *L    = mxGetPr(L_PARAM(S));//motor stator phase self inductance
    const real_T      *M    = mxGetPr(M_PARAM(S));//motor stator mutual inductance
    const real_T      *Ke   = mxGetPr(Ke_PARAM(S));//back_EMF coefficient
    const real_T      *J    = mxGetPr(J_PARAM(S));//drive inertia
    const real_T      *P    = mxGetPr(P_PARAM(S));//number of poles
 
    real_T             Vs   = *uPtrs0[0];
    real_T             Tl   = *uPtrs7[0];
    real_T             S1   = *uPtrs1[0];
    real_T             S2   = *uPtrs2[0];
    real_T             S3   = *uPtrs3[0];
    real_T             S4   = *uPtrs4[0];
    real_T             S5   = *uPtrs5[0];
    real_T             S6   = *uPtrs6[0];
    real_T             pwm  = *uPtrs8[0];
    
    real_T             ia   = (x[0]+x[1])/3;//phase a current
    real_T             ib   = (x[2]-x[0])/3;//phase b current
    real_T             ic   = (-1)*(x[1]+x[2])/3;//phase c current
    real_T             ea   = Ke[0]*x[3]*(sin(x[4])+(1/7.9)*sin(3*x[4]))/P[0];//phase a BEMF
    real_T             eb   = Ke[0]*x[3]*(sin(x[4]-2*pai/3)+(1/7.9)*sin(3*(x[4]-2*pai/3)))/P[0];//phase b BEMF
    real_T             ec   = Ke[0]*x[3]*(sin(x[4]+2*pai/3)+(1/7.9)*sin(3*(x[4]+2*pai/3)))/P[0];//phase c BEMF
    real_T             Vab;
    real_T             Vac;
    real_T             Vbc;
        
    /*line to line voltage determination*/
    /*stator voltage vector 1*/
    if((S5==1)&&(S6==1))
    { commu_flag = 1;
      if(pwm==1)//pwm on mode
      {
    	if((-1)*ia>=delta&&(Vsg+ea)<Vs)  //commutation freewheeling
    	{
    		Vab = Vs;
    		Vac = 0;
            Vag = Vs;
            Vbg = 0;
    		Vcg = Vs;
            Vsg = (2*Vs-ea-eb-ec)/3;
    	}
    	else   //commutation freewheeling over
    	{
    		Vab = 0.5*(Vs+2*ea-eb-ec);
    		Vac = 0.5*(2*ea-Vs-eb-ec);
            Vsg = (Vs-ec-eb)/2;
            Vag = Vsg+ea;
            Vbg = 0;
            Vcg = Vs;
    	}
    	Vbc = (-1)*Vs;
      }
      else  //pwm off mode
      {
      	if((-1)*ia>=delta&&(Vsg+ea)<Vs)  //commutation freewheeling
      	{
      		if((-1)*ib>=delta)//pwm freewheeling
      		{
      			Vac = Vbc = Vab = 0;
                Vag = Vbg = Vcg = Vs;
                Vsg = (3*Vs-ea-eb-ec)/3;
      		}
      		else //pwm freewheeling over
      		{
      			Vab = (-0.5)*(2*eb-ea-ec);
      			Vac = 0;
      			Vbc = (-1)*Vab;
                Vag = Vcg = Vs;
      			Vsg = Vs-(ea+ec)/2;
                Vbg = Vsg+eb;
      		}
      	}
      	
      	else //commutation freewheeling over
      	{
      	        if(ic>=delta)  //pwm freewheeling
      	        {
      	        	Vab = Vac = 0.5*(2*ea-eb-ec);
      	        	Vbc = 0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -