⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 watershed.txt

📁 用标记-分水岭算法对输入图像进行分割,是在Vc++下的程序代码
💻 TXT
字号:
//Image Watershed Segmentation
//This is the implementation of the algorithm based on immersion model. 
// ===========================================================================
// =====     Module: Watershed.cpp
// ===== -------------------------------------------------------------- ======
// =====     Version 01   Date: 04/21/2003
// ===== -------------------------------------------------------------- ======
// ===========================================================================
// =====     Written by Foxhole@smth.org
// =====     e-mail: gong200@china.com
// ===========================================================================
// Permission to use, copy, or modify this software and its documentation
// for educational and research purposes only is hereby granted without
// fee, provided that this copyright notice appear on all copies and
// related documentation. For any other uses of this software, in original
// or modified form, including but not limited to distribution in whole
// or in part, specific prior permission must be obtained from
// the author(s).
//
// THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
// EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
// WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
//
// IN NO EVENT SHALL RUTGERS UNIVERSITY BE LIABLE FOR ANY SPECIAL,
// INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY
// DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
// WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
// THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE
// OR PERFORMANCE OF THIS SOFTWARE.
// ===========================================================================

#include <queue>
#include <vector>
#include <windows.h>


/*====================================================================
函数名            :    Watershed
功能            :    用标记-分水岭算法对输入图像进行分割
算法实现        :    无
输入参数说明    :    OriginalImage --输入图像(灰度图,0~255)
                     SeedImage   --标记图像(二值图,0-非标记,1-标记)
                     LabelImage   --输出图像(1-第一个分割区域,2-第二个分割区域,...)
                     row       --图像行数
                     col       --图像列数
返回值说明        :    无    
====================================================================*/
void Watershed(const int **OriginalImage, char** SeedImage, int **LabelImage, int row, int col)
{
   using namespace std;

   //标记区域标识号,从1开始
   int Num=0;
   int i,j;

   //保存每个队列种子个数的数组
   vector<int*> SeedCounts;
   //临时种子队列
   queue<POINT> que;
   //保存所有标记区域种子队列的数组
   vector<queue<POINT>* > qu;
   
   int* array;
   queue<POINT> *uu;
   POINT temp;

   for(i=0;i<row;i++)
       for(j=0;j<col;j++)
           LabelImage[j]=0;
   

   int m,n,k=0;
   int up,down,right,left,upleft,upright,downleft,downright;

   //预处理,提取区分每个标记区域,并初始化每个标记的种子队列
   //种子是指标记区域边缘的点,他们可以在水位上升时向外淹没(或者说生长)
   for(i=0;i<row;i++)
   {
       for(j=0;j<col;j++)
       {
           //如果找到一个标记区域
           if(SeedImage[j]==1)
           {
               //区域的标识号加一
               Num++;
               //分配数组并初始化为零
               array=new int[256];
               ZeroMemory(array,256*sizeof(int));
               //
               SeedCounts.push_back(array);
               //分配本标记的优先队列
               uu=new queue<POINT>[256];
               //加入到队列数组中
               qu.push_back(uu);
               //当前点放入本标记区域的临时种子队列中
               temp.x=i;
               temp.y=j;
               que.push(temp);
               //当前点标记为已处理
               LabelImage[j]=Num;
               SeedImage[j]=127;
               
               //让种子队列中的种子进行生长直到所有的种子都生长完毕
               while(!que.empty())
               {
                   up=down=right=left=0;
                   upleft=upright=downleft=downright=0;
                   //队列中取出一个种子
                   temp=que.front();
                   m=temp.x;
                   n=temp.y;
                   que.pop();

                   if(m>0)
                   {
                       //上方若为可生长点则加为新种子
                       if(SeedImage[m-1][n]==1)
                       {
                           temp.x=m-1;
                           temp.y=n;
                           que.push(temp);
                           //新种子点标记为已淹没区域
                           LabelImage[m-1][n]=Num;
                           SeedImage[m-1][n]=127;
                       }else//否则上方为不可生长
                       {
                           up=1;
                       }
                   }
                   if(m>0&&n>0)
                   {
                       if(SeedImage[m-1][n-1]==1)//左上方若为可生长点则加为新种子
                       {
                           temp.x=m-1;
                           temp.y=n-1;
                           que.push(temp);
                           //新种子点标记为已淹没区域
                           LabelImage[m-1][n-1]=Num;
                           SeedImage[m-1][n-1]=127;
                       }else//否则左上方为不可生长
                       {
                           upleft=1;
                       }
                   }

                   if(m<row-1)
                   {
                       if(SeedImage[m+1][n]==1)//下方若为可生长点则加为新种子
                       {
                           temp.x=m+1;
                           temp.y=n;
                           que.push(temp);
                           //新种子点标记为已淹没区域
                           LabelImage[m+1][n]=Num;
                           SeedImage[m+1][n]=127;
                       }else//否则下方为不可生长
                       {
                           down=1;
                       }
                   }
                   if(m<(row-1)&&n<(col-1))
                   {
                       if(SeedImage[m+1][n+1]==1)//下方若为可生长点则加为新种子
                       {
                           temp.x=m+1;
                           temp.y=n+1;
                           que.push(temp);
                           //新种子点标记为已淹没区域
                           LabelImage[m+1][n+1]=Num;
                           SeedImage[m+1][n+1]=127;
                       }else//否则下方为不可生长
                       {
                           downright=1;
                       }
                   }
               
                   if(n<col-1)
                   {
                       if(SeedImage[m][n+1]==1)//右方若为可生长点则加为新种子
                       {
                           temp.x=m;
                           temp.y=n+1;
                           que.push(temp);
                           //新种子点标记为已淹没区域
                           LabelImage[m][n+1]=Num;
                           SeedImage[m][n+1]=127;
                       }else//否则右方为不可生长
                       {
                           right=1;
                       }
                   }
                   if(m>0&&n<(col-1))
                   {
                       if(SeedImage[m-1][n+1]==1)//右上方若为可生长点则加为新种子
                       {
                           temp.x=m-1;
                           temp.y=n+1;
                           que.push(temp);
                           //新种子点标记为已淹没区域
                           LabelImage[m-1][n+1]=Num;
                           SeedImage[m-1][n+1]=127;
                       }else//否则右上方为不可生长
                       {
                           upright=1;
                       }
                   }

                   if(n>0)
                   {
                       if(SeedImage[m][n-1]==1)//左方若为可生长点则加为新种子
                       {
                           temp.x=m;
                           temp.y=n-1;
                           que.push(temp);
                           //新种子点标记为已淹没区域
                           LabelImage[m][n-1]=Num;
                           SeedImage[m][n-1]=127;
                       }else//否则左方为不可生长
                       {
                           left=1;
                       }
                   }
                   if(m<(row-1)&&n>0)
                   {
                       if(SeedImage[m+1][n-1]==1)//左下方若为可生长点则加为新种子
                       {
                           temp.x=m+1;
                           temp.y=n-1;
                           que.push(temp);
                           //新种子点标记为已淹没区域
                           LabelImage[m+1][n-1]=Num;
                           SeedImage[m+1][n-1]=127;
                       }else//否则左方为不可生长
                       {
                           downleft=1;
                       }
                   }

                   //上下左右只要有一点不可生长,那么本点为初始种子队列中的一个
                   if(up||down||right||left||
                       upleft||downleft||upright||downright)
                   {
                       temp.x=m;
                       temp.y=n;
                       qu[Num-1][OriginalImage[m][n]].push(temp);
                       SeedCounts[Num-1][OriginalImage[m][n]]++;
                   }

               }//while结束
           }
       }
   }

   bool actives;//在某一水位处,所有标记的种子生长完的标志
   int WaterLevel;

   //淹没过程开始,水位从零开始上升
   for(WaterLevel=0;WaterLevel<256;WaterLevel++)
   {
       actives=true;
       while(actives)
       {
           actives=false;
           //依次处理每个标记区域
           for(i=0;i<Num;i++)
           {
           if(!qu[WaterLevel].empty())
           {
               actives=true;
               while(SeedCounts[WaterLevel]>0)
               {
                   SeedCounts[WaterLevel]--;
                   temp=qu[WaterLevel].front();
                   qu[WaterLevel].pop();
                   m = temp.x;
                   n = temp.y;//当前种子的坐标
                   if(m>0)
                   {
                       if(!LabelImage[m-1][n])//上方若未处理
                       {
                           temp.x=m-1;
                           temp.y=n;
                           LabelImage[m-1][n]=i+1;//上方点标记为已淹没区域

                           if(OriginalImage[m-1][n]<=WaterLevel)//上方若为可生长点则加入当前队列
                           {
                               qu[WaterLevel].push(temp);
                           }
                           else//否则加入OriginalImage[m-1][n]级队列
                           {
                               qu[OriginalImage[m-1][n]].push(temp);
                               SeedCounts[OriginalImage[m-1][n]]++;
                           }
                       }
                   }

                   if(m<row-1)
                   {
                       if(!LabelImage[m+1][n])//下方若未处理
                       {
                           temp.x=m+1;
                           temp.y=n;
                           LabelImage[m+1][n]=i+1;//下方点标记为已淹没区域

                           if(OriginalImage[m+1][n]<=WaterLevel)//下方若为可生长点则加入当前队列
                           {
                               qu[WaterLevel].push(temp);
                           }
                           else//否则加入OriginalImage[m+1][n]级队列
                           {
                               qu[OriginalImage[m+1][n]].push(temp);
                               SeedCounts[OriginalImage[m+1][n]]++;
                           }
                       }
                   }
           
                   if(n<col-1)
                   {
                       if(!LabelImage[m][n+1])//右边若未处理
                       {
                           temp.x=m;
                           temp.y=n+1;
                           LabelImage[m][n+1]=i+1;//右边点标记为已淹没区域

                           if(OriginalImage[m][n+1]<=WaterLevel)//右边若为可生长点则加入当前队列
                           {
                               qu[WaterLevel].push(temp);
                           }
                           else//否则加入OriginalImage[m][n+1]级队列
                           {
                               qu[OriginalImage[m][n+1]].push(temp);
                               SeedCounts[OriginalImage[m][n+1]]++;
                           }
                       }
                   }

                   if(n>0)
                   {
                       if(!LabelImage[m][n-1])//左边若未处理
                       {
                           temp.x=m;
                           temp.y=n-1;
                           LabelImage[m][n-1]=i+1;//左边点标记为已淹没区域

                           if(OriginalImage[m][n-1]<=WaterLevel)//左边若为可生长点则加入当前队列
                           {
                               qu[WaterLevel].push(temp);
                           }
                           else//否则加入OriginalImage[m][n-1]级队列
                           {
                               qu[OriginalImage[m][n-1]].push(temp);
                               SeedCounts[OriginalImage[m][n-1]]++;
                           }
                       }
                   }
               }//while循环结束
               SeedCounts[WaterLevel]=qu[WaterLevel].size();
           }//if结束
           }//for循环结束
       }//while循环结束
   }//for循环结束
   while(!qu.empty())
   {
       uu=qu.back();
       delete[] uu;
       qu.pop_back();
   }
   while(!SeedCounts.empty())
   {
       array=SeedCounts.back();
       delete[] array;
       SeedCounts.pop_back();
   }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -