📄 gd_topal.c
字号:
long colorcount;}box;typedef box *boxptr;LOCAL (boxptr) find_biggest_color_pop (boxptr boxlist, int numboxes)/* Find the splittable box with the largest color population *//* Returns NULL if no splittable boxes remain */{ register boxptr boxp; register int i; register long maxc = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->colorcount > maxc && boxp->volume > 0) { which = boxp; maxc = boxp->colorcount; } } return which;}LOCAL (boxptr) find_biggest_volume (boxptr boxlist, int numboxes)/* Find the splittable box with the largest (scaled) volume *//* Returns NULL if no splittable boxes remain */{ register boxptr boxp; register int i; register INT32 maxv = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->volume > maxv) { which = boxp; maxv = boxp->volume; } } return which;}LOCAL (void)#ifndef ORIGINAL_LIB_JPEG update_box (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, boxptr boxp){#else update_box (j_decompress_ptr cinfo, boxptr boxp)/* Shrink the min/max bounds of a box to enclose only nonzero elements, *//* and recompute its volume and population */{ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;#endif hist3d histogram = cquantize->histogram; histptr histp; int c0, c1, c2; int c0min, c0max, c1min, c1max, c2min, c2max; INT32 dist0, dist1, dist2; long ccount; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; if (c0max > c0min) for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0min = c0min = c0; goto have_c0min; } }have_c0min: if (c0max > c0min) for (c0 = c0max; c0 >= c0min; c0--) for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0max = c0max = c0; goto have_c0max; } }have_c0max: if (c1max > c1min) for (c1 = c1min; c1 <= c1max; c1++) for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1min = c1min = c1; goto have_c1min; } }have_c1min: if (c1max > c1min) for (c1 = c1max; c1 >= c1min; c1--) for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1max = c1max = c1; goto have_c1max; } }have_c1max: if (c2max > c2min) for (c2 = c2min; c2 <= c2max; c2++) for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2min = c2min = c2; goto have_c2min; } }have_c2min: if (c2max > c2min) for (c2 = c2max; c2 >= c2min; c2--) for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2max = c2max = c2; goto have_c2max; } }have_c2max: /* Update box volume. * We use 2-norm rather than real volume here; this biases the method * against making long narrow boxes, and it has the side benefit that * a box is splittable iff norm > 0. * Since the differences are expressed in histogram-cell units, * we have to shift back to JSAMPLE units to get consistent distances; * after which, we scale according to the selected distance scale factors. */ dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2; /* Now scan remaining volume of box and compute population */ ccount = 0; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++, histp++) if (*histp != 0) { ccount++; } } boxp->colorcount = ccount;}LOCAL (int)#ifdef ORIGINAL_LIB_JPEGmedian_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, int desired_colors)#elsemedian_cut (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, boxptr boxlist, int numboxes, int desired_colors)#endif/* Repeatedly select and split the largest box until we have enough boxes */{ int n, lb; int c0, c1, c2, cmax; register boxptr b1, b2; while (numboxes < desired_colors) { /* Select box to split. * Current algorithm: by population for first half, then by volume. */ if (numboxes * 2 <= desired_colors) { b1 = find_biggest_color_pop (boxlist, numboxes); } else { b1 = find_biggest_volume (boxlist, numboxes); } if (b1 == NULL) /* no splittable boxes left! */ break; b2 = &boxlist[numboxes]; /* where new box will go */ /* Copy the color bounds to the new box. */ b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; /* Choose which axis to split the box on. * Current algorithm: longest scaled axis. * See notes in update_box about scaling distances. */ c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; /* We want to break any ties in favor of green, then red, blue last. * This code does the right thing for R,G,B or B,G,R color orders only. */#if RGB_RED == 0 cmax = c1; n = 1; if (c0 > cmax) { cmax = c0; n = 0; } if (c2 > cmax) { n = 2; }#else cmax = c1; n = 1; if (c2 > cmax) { cmax = c2; n = 2; } if (c0 > cmax) { n = 0; }#endif /* Choose split point along selected axis, and update box bounds. * Current algorithm: split at halfway point. * (Since the box has been shrunk to minimum volume, * any split will produce two nonempty subboxes.) * Note that lb value is max for lower box, so must be < old max. */ switch (n) { case 0: lb = (b1->c0max + b1->c0min) / 2; b1->c0max = lb; b2->c0min = lb + 1; break; case 1: lb = (b1->c1max + b1->c1min) / 2; b1->c1max = lb; b2->c1min = lb + 1; break; case 2: lb = (b1->c2max + b1->c2min) / 2; b1->c2max = lb; b2->c2min = lb + 1; break; } /* Update stats for boxes */#ifdef ORIGINAL_LIB_JPEG update_box (cinfo, b1); update_box (cinfo, b2);#else update_box (oim, nim, cquantize, b1); update_box (oim, nim, cquantize, b2);#endif numboxes++; } return numboxes;}LOCAL (void)#ifndef ORIGINAL_LIB_JPEG compute_color (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, boxptr boxp, int icolor){#else compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)/* Compute representative color for a box, put it in colormap[icolor] */{ /* Current algorithm: mean weighted by pixels (not colors) */ /* Note it is important to get the rounding correct! */ my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;#endif hist3d histogram = cquantize->histogram; histptr histp; int c0, c1, c2; int c0min, c0max, c1min, c1max, c2min, c2max; long count = 0; /* 2.0.28: = 0 */ long total = 0; long c0total = 0; long c1total = 0; long c2total = 0; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if ((count = *histp++) != 0) { total += count; c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count; c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count; c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count; } } }#ifdef ORIGINAL_LIB_JPEG cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total >> 1)) / total); cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total >> 1)) / total); cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total >> 1)) / total);#else /* 2.0.16: Paul den Dulk found an occasion where total can be 0 */ if (count) { nim->red[icolor] = (int) ((c0total + (total >> 1)) / total); nim->green[icolor] = (int) ((c1total + (total >> 1)) / total); nim->blue[icolor] = (int) ((c2total + (total >> 1)) / total); } else { nim->red[icolor] = 255; nim->green[icolor] = 255; nim->blue[icolor] = 255; }#endif}LOCAL (void)#ifdef ORIGINAL_LIB_JPEGselect_colors (j_decompress_ptr cinfo, int desired_colors)#elseselect_colors (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, int desired_colors)#endif/* Master routine for color selection */{ boxptr boxlist; int numboxes; int i; /* Allocate workspace for box list */#ifdef ORIGINAL_LIB_JPEG boxlist = (boxptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF (box));#else /* This can't happen because we clamp desired_colors at gdMaxColors, but anyway */ if (overflow2(desired_colors, sizeof (box))) { return; } boxlist = (boxptr) gdMalloc (desired_colors * sizeof (box));#endif /* Initialize one box containing whole space */ numboxes = 1; boxlist[0].c0min = 0; boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; boxlist[0].c1min = 0; boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; boxlist[0].c2min = 0; boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;#ifdef ORIGINAL_LIB_JPEG /* Shrink it to actually-used volume and set its statistics */ update_box (cinfo, &boxlist[0]); /* Perform median-cut to produce final box list */ numboxes = median_cut (cinfo, boxlist, numboxes, desired_colors); /* Compute the representative color for each box, fill colormap */ for (i = 0; i < numboxes; i++) compute_color (cinfo, &boxlist[i], i); cinfo->actual_number_of_colors = numboxes; TRACEMS1 (cinfo, 1, JTRC_QUANT_SELECTED, numboxes);#else /* Shrink it to actually-used volume and set its statistics */ update_box (oim, nim, cquantize, &boxlist[0]); /* Perform median-cut to produce final box list */ numboxes = median_cut (oim, nim, cquantize, boxlist, numboxes, desired_colors); /* Compute the representative color for each box, fill colormap */ for (i = 0; i < numboxes; i++) compute_color (oim, nim, cquantize, &boxlist[i], i); nim->colorsTotal = numboxes;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -