📄 userlib.c
字号:
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "def.h"
#include "option.h"
#include "2440addr.h"
#include "2440lib.h"
#include "userlib.h"
/************************** Manual register setting *****************************/
char sbuf[80], scmd1[20], scmd2[20], scmd3[20], scmd4[20];
//char *sbuf, *scmd1, *scmd2, *scmd3, *scmd4;
U32 cmd2, cmd3, cmd4;
char pre_scmd[10][80];
const void *command_set[][2] = {
(void *)Memory_Dump, "dump",
(void *)Multimem_Write, "mw",
(void *)Halfword_Read, "hr",
(void *)Halfword_Write, "hw",
(void *)Halfword_Write_Multi, "hwm",
(void *)Word_Write, "w",
(void *)Word_Write_Or, "ow",
(void *)Word_Read, "r",
(void *)Fill_Memory, "fi",
// Add the test function. add manset_Usage too.
0,0,0
};
void Manset_Usage(void)
{
int i;
Uart_Printf("dump:memory dump(ex:dump addr length)\n");
Uart_Printf("mw:multiple write.\n");
Uart_Printf("hr:halfword read.\n");
Uart_Printf("hw:halfword write.\n");
Uart_Printf("hwm:halfword write multi.\n");
Uart_Printf("w:word write.\n");
Uart_Printf("ow:word write with OR logic.\n");
Uart_Printf("r:word read.\n");
Uart_Printf("fi:memory fill(ex:fi addr length value).\n");
Uart_Printf("P: execute previous command.\n");
}
void Manual_Register_Set(void)
{
U32 i=0, j=0;
Uart_Printf("Manual regiter set. (q)uit.\n");
Uart_Printf("Usage(?): >> <command> <opr1> (<opr2>)\n");
Manset_Usage();
while (1) {
Uart_Printf(">> ");
Uart_GetString(sbuf);
if(*sbuf==NULL) continue;
else if(*sbuf=='P') Execute_Precmd();
else if(*sbuf==ESC_KEY) break;
else if(*sbuf==ESC_KEY) {
Manset_Usage();
} else {
Get_Cmd(sbuf);
for(i=0; (int)(command_set[i][0])!=NULL; i++) {
if(!strcmp((command_set[i][1]), scmd1)) {
((void (*)(void)) (command_set[i][0]))();
for(j=MAX_PRECMD_SIZE-1; j>0; j--) {
//if((int)pre_scmd[j][0]==NULL) continue;
strcpy(pre_scmd[j], pre_scmd[j-1]);
}
strcpy(pre_scmd[j], sbuf);
break;
}
}
} // end of if(*sbuf==NULL)...
}
}
void Get_Cmd(char incmd[])
{
int cmd_level=0, i, j, overlap=0;
scmd1[0]='\0';
scmd2[0]='\0';
scmd3[0]='\0';
scmd4[0]='\0';
for(j=0, i=0; incmd[i]!=NULL; i++) {
if(incmd[i] != ' ' && incmd[i] != 0x09 && incmd[i] != ',') {
overlap=0;
switch(cmd_level) {
case 0:
scmd1[j] = incmd[i];
scmd1[j+1]='\0';
//if(DEBUG_LEVEL>0) Uart_Printf("(%c)", scmd1[j]);
break;
case 1:
scmd2[j] = incmd[i];
scmd2[j+1]='\0';
//if(DEBUG_LEVEL>0) Uart_Printf("%c", scmd2[j]);
break;
case 2:
scmd3[j] = incmd[i];
scmd3[j+1]='\0';
//if(DEBUG_LEVEL>0) Uart_Printf("[%c]", scmd3[j]);
break;
case 3:
scmd4[j] = incmd[i];
scmd4[j+1]='\0';
//if(DEBUG_LEVEL>0) Uart_Printf("[%c]", cmd4[j]);
break;
}
j++;
} else {
j=0;
if(overlap==0) {
cmd_level++;
}
overlap=1;
}
}
// Make argument.
cmd2 = Get_Num(scmd2); // atox(scmd2);
cmd3 = Get_Num(scmd3); // : Character to hexa(decimal)
cmd4 = Get_Num(scmd4); // : Character to hexa(decimal)
if(cmd2==0xffffffff) cmd2=0;
if(cmd3==0xffffffff) cmd3=0;
if(cmd4==0xffffffff) cmd4=0;
}
U32 Get_Num(char *string)
{
int base=10;
int minus=0;
int lastIndex;
int result=0;
int i;
if(string[0]=='-')
{
minus=1;
string++;
}
if(string[0]=='0' && (string[1]=='x' || string[1]=='X'))
{
base=16;
string+=2;
}
lastIndex=strlen(string)-1;
if(lastIndex<0)return -1;
if( string[lastIndex]=='h' || string[lastIndex]=='H' )
{
base=16;
string[lastIndex]=0;
lastIndex--;
}
if(base==10)
{
result=atoi(string);
result=minus ? (-1*result):result;
}
else
{
for(i=0;i<=lastIndex;i++)
{
if(isalpha(string[i]))
{
if(isupper(string[i]))
result=(result<<4)+string[i]-'A'+10;
else
result=(result<<4)+string[i]-'a'+10;
}
else
{
result=(result<<4)+string[i]-'0';
}
}
result=minus ? (-1*result):result;
}
return result;
}
void Execute_Precmd(void)
{
int cnt=0, i=0, cmd_sel=0, exec_cmd=1;
char ch;
for(i=0; i<MAX_PRECMD_SIZE && pre_scmd[i][0]!=NULL; i++) {
Uart_Printf("%d: [%s]\n", i, pre_scmd[i]);
}
if(i==0) return;
Uart_Printf("select num(-1 to exit)? ");
cmd_sel = Uart_GetIntNum();
if(cmd_sel != -1) {
Uart_Printf("\n>> %s", pre_scmd[cmd_sel]);
Uart_Printf("\n");
Get_Cmd(pre_scmd[cmd_sel]); // Make sbuf -> scmd...
for(i=0; (int)(command_set[i][0])!=NULL; i++) {
if(!strcmp((command_set[i][1]), scmd1)) {
((void (*)(void)) (command_set[i][0]))();
break;
}
}
}
}
void Uart_AppendString(char *string)
{
char *string2 = string;
char c;
string = (string + strlen(string));
while((c = Uart_Getch())!='\r') {
if(c=='\b') {
if( (int)string2 < (int)string ) {
Uart_Printf("\b \b");
string--;
}
} else {
*string++ = c;
Uart_SendByte(c);
}
}
*string='\0';
Uart_SendByte('\n');
}
//================================================================
void Memory_Dump(void)
{
int i;
Uart_Printf("memory dump\n");
for(i=0; i<cmd3; i+=4) {
Uart_Printf(" %08xh: %08xh\n", (cmd2+i), *(U32 *)(cmd2+i));
if(Uart_GetKey()!=NULL) {
Uart_Printf("Break at %x\n", cmd2+i);
break;
}
}
}
void Multimem_Write(void)
{
U32 i, itmp;
char tmps[20];
if(cmd2%4) cmd2=(cmd2/4)*4;
Uart_Printf("Multiple memory write (q)uit.\n");
for(i=0; ; ) {
Uart_Printf(" %08xh ? ", cmd2+i);
Uart_GetString(tmps);
if(*tmps=='q') break;
itmp = Get_Num(tmps);
if(itmp!=-1) *(U32 *)(cmd2+i) = itmp;
i+=4;
}
}
void Fill_Memory(void)
{
U32 i, itmp;
char tmps[20];
if(cmd2%4) cmd2=(cmd2/4)*4;
Uart_Printf("Fill memory[%08xh - %08xh with %xh].\n", cmd2, cmd2 + cmd3, cmd4);
for(i=0; i<cmd3; i+=4) {
*(U32 *)(cmd2+i) = cmd4;
if(Uart_GetKey()!=NULL) {
Uart_Printf("Break at %x\n", cmd2+i);
break;
}
}
}
void Halfword_Read(void)
{
Uart_Printf(" [%08xh:%04xh]\n", cmd2, *(U16 *)cmd2);
}
void Halfword_Write(void)
{
*(U16 *)cmd2 = (U16)cmd3;
Uart_Printf(" [%08xh<-%04xh]\n", cmd2, (U16)cmd3);
}
void Halfword_Write_Multi(void)
{
char *string;
short int indata;
Uart_Printf(" Addr:%08xh\n", cmd2);
while(1) {
Uart_Printf(" data: ");
indata = Uart_GetIntNum();
if(indata==-1) break;
*(U16 *)cmd2 = indata;
Uart_Printf(" [%08xh<-%04xh]\n", cmd2, indata);
}
}
void Word_Write(void)
{
if(cmd2%4) cmd2=(cmd2/4)*4;
*(U32 *)cmd2 = (U32)cmd3;
Uart_Printf(" [%08xh<-%08xh]\n", cmd2, cmd3);
}
void Word_Write_Or(void)
{
if(cmd2%4) cmd2=(cmd2/4)*4;
*(U32 *)cmd2 |= (U32)cmd3;
Uart_Printf(" [%08xh |= %08xh]\n", cmd2, cmd3);
}
void Word_Read(void)
{
if(cmd2%4) cmd2=(cmd2/4)*4;
Uart_Printf(" [%08xh:%08xh]\n", cmd2, *(U32 *)cmd2);
}
void user_delay(unsigned int cnt)
{
int i, j;
for(j=0; j<cnt; j++)
for(i=0; i<500; i++);
}
/***************************************************************************/
/**************************** Clock calculation ********************************/
// Clock calculation. Current clock information calc.
// Register value : MPLLCON(Mdiv, Pdiv, Sdiv), CLKDIVN(Hdivn, Pdivn).
// Hclk = Fclk/Hclk_Ratio, Pclk = Fclk/Hclk_Ratio/Pclk_Ratio.
// Refresh count(Ref_Cnt) = 2048+1-(Hclk*7.8)
void Calc_Clock(int print_msg);
U32 Mdiv, Pdiv, Sdiv, Fclk, Hclk, Pclk, Hdivn, Pdivn, Hclk_Ratio, Pclk_Ratio, Ref_Cnt;
// Register value : Mdiv, Pdiv, Sdiv, Hdivn, Pdivn.
// Hclk = Fclk/Hclk_Ratio, Pclk = Fclk/Hclk_Ratio/Pclk_Ratio.
#define LCDCLK (5000000) //5MHz
void Calc_Clock(int print_msg)
{
unsigned int mpll_val, sval, lcd_clk_val, tmpi;
// Get MPS value from register.
mpll_val = rMPLLCON;
Mdiv = (mpll_val&(0xff<<12))>>12;
Pdiv = (mpll_val&(0x3f<<4))>>4;
Sdiv = (mpll_val&0x3);
// Get HDIVN, PDIVN value from register.
Hdivn = ((rCLKDIVN&0x6)>>1);
Pdivn = (rCLKDIVN&1);
// Get the HCLK and PCLK ratio
switch(Hdivn) {
case 0: Hclk_Ratio=1; break;
case 1: Hclk_Ratio=2; break;
case 2: Hclk_Ratio=4; break;
case 3: Hclk_Ratio=3; break;
}
switch(Pdivn) {
case 0: Pclk_Ratio=1; break;
case 1: Pclk_Ratio=2; break;
}
tmpi = rCAMDIVN&(3<<8);
if(tmpi!=0) {
if(Hclk_Ratio==3 || Hclk_Ratio==4)
Hclk_Ratio *= 2;
}
// Get sval for calc Fout.
//sval=(int)pow(2,Sdiv);
switch(Sdiv) {
case 0: sval = 1; break;
case 1: sval = 2; break;
case 2: sval = 4; break;
case 3: sval = 8; break;
default: sval = 0; break;
}
// Calc Fclk, Hclk, Pclk
#if CPU2440A==TRUE
Fclk=(U32)( (((float)Mdiv+8)*FIN*2.0)/( ((float)Pdiv+2)*(float)sval) ); // pll2188x.
#else
Fclk=(U32)( (((float)Mdiv+8)*FIN)/( ((float)Pdiv+2)*(float)sval) ); // pll2115x
#endif
Hclk =(U32)( ((float)Fclk/(float)Hclk_Ratio) );
Pclk = (U32)( (((float)Fclk/(float)Hclk_Ratio)/(float)Pclk_Ratio));
// Calc refresh count.
Ref_Cnt = 2048+1-(U32)( (float)( ((float)Hclk*7.8)/MEGA) );
Uart_TxEmpty(1);
Uart_Init(Pclk, 115200);
if(print_msg!=0) {
Uart_Printf("MPLLVal [M:%xh(%d),P:%xh,S:%xh]\n", Mdiv, Mdiv, Pdiv, Sdiv);
Uart_Printf("F/H/PCLK=[1:%d:%d=", Hclk_Ratio, Hclk_Ratio*Pclk_Ratio);
//Uart_Printf("%4.3f:%4.3f:%4.3f MHz]\n", (float)Fclk/MEGA, (float)Hclk/MEGA, (float)Pclk/MEGA);
Uart_Printf("%4.1f:%4.1f:%4.1f MHz]\n", (float)Fclk/MEGA, (float)Hclk/MEGA, (float)Pclk/MEGA);
Uart_Printf("Refcnt:%d\n", Ref_Cnt);
}
lcd_clk_val = (Hclk/(2.0*LCDCLK)+0.5)-1;
rLCDCON1 = (rLCDCON1 & ~(0x3ff<<8)) | lcd_clk_val<<8;
//Uart_Printf("CLKVAL:%d\n", lcd_clk_val);
}
/***************************************************************************/
//*************************[ Ticker ]********************************
unsigned int Init_Ticker(int divider) //0:16us,1:32us 2:64us 3:128us
{
unsigned int Div_us;
rWTCON = ((Pclk/1000000-1)<<8)|(divider<<3); //Watch-dog timer control register
rWTDAT = 0xffff; //Watch-dog timer data register
rWTCNT = 0xffff; //Watch-dog count register
pISR_WDT_AC97=(int)Ticker_int;
ClearPending(BIT_WDT_AC97);
rSUBSRCPND=(BIT_SUB_WDT);
rINTMSK&=~(BIT_WDT_AC97);
rINTSUBMSK&=~(BIT_SUB_WDT);
switch(divider) {
case 0: Div_us=16; break;
case 1: Div_us=32; break;
case 2: Div_us=64; break;
case 3: Div_us=128; break;
default: Div_us=0; break;
}
return Div_us;
}
//=================================================================
int Ticker_Stop(void)
{
rWTCON = ((Pclk/1000000-1)<<8);
return (0xffff - rWTCNT);
}
static void __irq Ticker_int(void)
{
rINTSUBMSK|=(BIT_SUB_WDT); // Just for the safety
rSUBSRCPND=(BIT_SUB_WDT); // Clear Sub int pending
ClearPending(BIT_WDT_AC97); // Clear master pending
Uart_Printf("Error: Ticker timer reaches 0.\n");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -