⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pci_pciw_fifo_control.v

📁 这是用pci-wishbone核和16450串口核在xilinx的fpga上实现的串口程序
💻 V
字号:
//////////////////////////////////////////////////////////////////////////                                                              ////////  File name "pciw_fifo_control.v"                             ////////                                                              ////////  This file is part of the "PCI bridge" project               ////////  http://www.opencores.org/cores/pci/                         ////////                                                              ////////  Author(s):                                                  ////////      - Miha Dolenc (mihad@opencores.org)                     ////////                                                              ////////  All additional information is avaliable in the README       ////////  file.                                                       ////////                                                              ////////                                                              //////////////////////////////////////////////////////////////////////////////                                                              //////// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org          ////////                                                              //////// This source file may be used and distributed without         //////// restriction provided that this copyright statement is not    //////// removed from the file and that any derivative work contains  //////// the original copyright notice and the associated disclaimer. ////////                                                              //////// This source file is free software; you can redistribute it   //////// and/or modify it under the terms of the GNU Lesser General   //////// Public License as published by the Free Software Foundation; //////// either version 2.1 of the License, or (at your option) any   //////// later version.                                               ////////                                                              //////// This source is distributed in the hope that it will be       //////// useful, but WITHOUT ANY WARRANTY; without even the implied   //////// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR      //////// PURPOSE.  See the GNU Lesser General Public License for more //////// details.                                                     ////////                                                              //////// You should have received a copy of the GNU Lesser General    //////// Public License along with this source; if not, download it   //////// from http://www.opencores.org/lgpl.shtml                     ////////                                                              ////////////////////////////////////////////////////////////////////////////// CVS Revision History//// $Log: pci_pciw_fifo_control.v,v $// Revision 1.5  2003/08/14 13:06:03  simons// synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.//// Revision 1.4  2003/08/08 16:36:33  tadejm// Added 'three_left_out' to pci_pciw_fifo signaling three locations before full. Added comparison between current registered cbe and next unregistered cbe to signal wb_master whether it is allowed to performe burst or not. Due to this, I needed 'three_left_out' so that writing to pci_pciw_fifo can be registered, otherwise timing problems would occure.//// Revision 1.3  2003/07/29 08:20:11  mihad// Found and simulated the problem in the synchronization logic.// Repaired the synchronization logic in the FIFOs./////* FIFO_CONTROL module provides read/write address and status generation for   FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */`include "pci_constants.v"// synopsys translate_off`include "timescale.v"// synopsys translate_onmodule pci_pciw_fifo_control(    rclock_in,    wclock_in,    renable_in,    wenable_in,    reset_in,    almost_full_out,    full_out,    almost_empty_out,    empty_out,    waddr_out,    raddr_out,    rallow_out,    wallow_out,    three_left_out,    two_left_out);parameter ADDR_LENGTH = 7 ;// independent clock inputs - rclock_in = read clock, wclock_in = write clockinput  rclock_in, wclock_in;// enable inputs - read address changes on rising edge of rclock_in when reads are allowed//                 write address changes on rising edge of wclock_in when writes are allowedinput  renable_in, wenable_in;// reset inputinput  reset_in;// almost full and empy status outputsoutput almost_full_out, almost_empty_out;// full and empty status outputsoutput full_out, empty_out;// read and write addresses outputsoutput [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;// read and write allow outputsoutput rallow_out, wallow_out ;// three and two locations left output indicatoroutput three_left_out ;output two_left_out ;// read address registerreg [(ADDR_LENGTH - 1):0] raddr ;// write address registerreg [(ADDR_LENGTH - 1):0] waddr;reg [(ADDR_LENGTH - 1):0] waddr_plus1;assign waddr_out = waddr ;// grey code registers// grey code pipeline for write addressreg [(ADDR_LENGTH - 1):0] wgrey_minus1 ; // previousreg [(ADDR_LENGTH - 1):0] wgrey_addr   ; // currentreg [(ADDR_LENGTH - 1):0] wgrey_next   ; // nextreg [(ADDR_LENGTH - 1):0] wgrey_next_plus1   ; // next plus 1// next write gray address calculation - bitwise xor between address and shifted addresswire [(ADDR_LENGTH - 2):0] calc_wgrey_next  = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;wire [(ADDR_LENGTH - 2):0] calc_wgrey_next_plus1  = waddr_plus1[(ADDR_LENGTH - 1):1] ^ waddr_plus1[(ADDR_LENGTH - 2):0] ;// grey code pipeline for read addressreg [(ADDR_LENGTH - 1):0] rgrey_minus2 ; // two before currentreg [(ADDR_LENGTH - 1):0] rgrey_minus1 ; // one before currentreg [(ADDR_LENGTH - 1):0] rgrey_addr ; // currentreg [(ADDR_LENGTH - 1):0] rgrey_next ; // next// next read gray address calculation - bitwise xor between address and shifted addresswire [(ADDR_LENGTH - 2):0] calc_rgrey_next  = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;// write allow - writes are allowed when fifo is not fullassign wallow_out = wenable_in & ~full_out ;// clear generation for FFs and registerswire clear = reset_in ;//rallow generationassign rallow_out = renable_in & ~empty_out ; // reads allowed if read enable is high and FIFO is not empty// at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary// when FIFO is empty, this register provides actual read address, so first location can be readreg [(ADDR_LENGTH - 1):0] raddr_plus_one ;// read address mux - when read is performed, next address is driven, so next data is available immediately after read// this is convenient for zero wait stait burstsassign raddr_out = rallow_out ? raddr_plus_one : raddr ;always@(posedge rclock_in or posedge clear)begin    if (clear)    begin        // initial values seem a bit odd - they are this way to allow easier grey pipeline implementation and to allow min fifo size of 8        raddr_plus_one <= #`FF_DELAY 5 ;        raddr          <= #`FF_DELAY 4 ;//        raddr_plus_one <= #`FF_DELAY 6 ;//        raddr          <= #`FF_DELAY 5 ;    end    else if (rallow_out)    begin        raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ;        raddr          <= #`FF_DELAY raddr_plus_one ;    endend/*-----------------------------------------------------------------------------------------------Read address control consists of Read address counter and Grey Address pipelineThere are 4 Grey addresses:    - rgrey_minus2 is Grey Code of address two before current address    - rgrey_minus1 is Grey Code of address one before current address    - rgrey_addr is Grey Code of current read address    - rgrey_next is Grey Code of next read address--------------------------------------------------------------------------------------------------*/// grey coded address pipeline for status generation in read clock domainalways@(posedge rclock_in or posedge clear)begin    if (clear)    begin        rgrey_minus2 <= #1 0 ;        rgrey_minus1 <= #`FF_DELAY 1 ;          rgrey_addr   <= #1 3 ;        rgrey_next   <= #`FF_DELAY 2 ;    end    else    if (rallow_out)    begin        rgrey_minus2 <= #1 rgrey_minus1 ;        rgrey_minus1 <= #`FF_DELAY rgrey_addr ;        rgrey_addr   <= #1 rgrey_next ;        rgrey_next   <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ;    endend/*--------------------------------------------------------------------------------------------Write address control consists of write address counter and 3 Grey Code Registers:    - wgrey_minus1 represents previous Grey coded write address    - wgrey_addr   represents current Grey Coded write address    - wgrey_next   represents next Grey Coded write address    - wgrey_next_plus1 represents second next Grey Coded write address----------------------------------------------------------------------------------------------*/// grey coded address pipeline for status generation in write clock domainalways@(posedge wclock_in or posedge clear)begin    if (clear)    begin        wgrey_minus1 <= #`FF_DELAY 1 ;        wgrey_addr   <= #`FF_DELAY 3 ;        wgrey_next   <= #`FF_DELAY 2 ;        wgrey_next_plus1 <= #`FF_DELAY 6;    end    else    if (wallow_out)    begin        wgrey_minus1 <= #`FF_DELAY wgrey_addr ;        wgrey_addr   <= #`FF_DELAY wgrey_next ;        wgrey_next   <= #`FF_DELAY {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ;//        wgrey_next   <= #`FF_DELAY wgrey_next_plus1 ;        wgrey_next_plus1 <= #`FF_DELAY {waddr_plus1[(ADDR_LENGTH - 1)], calc_wgrey_next_plus1} ;    endend// write address counter - nothing special except initial valuealways@(posedge wclock_in or posedge clear)begin    if (clear)    begin        // initial value 5        waddr <= #`FF_DELAY 4 ;        waddr_plus1 <= #`FF_DELAY 5 ;    end    else    if (wallow_out)    begin        waddr <= #`FF_DELAY waddr + 1'b1 ;        waddr_plus1 <= #`FF_DELAY waddr_plus1 + 1'b1 ;    endend/*------------------------------------------------------------------------------------------------------------------------------Gray coded address of read address decremented by two is synchronized to write clock domain and compared to:- previous grey coded write address - if they are equal, the fifo is full- gray coded write address. If they are equal, fifo is almost full.- grey coded next write address. If they are equal, the fifo has two free locations left.--------------------------------------------------------------------------------------------------------------------------------*/wire [(ADDR_LENGTH - 1):0] wclk_sync_rgrey_minus2 ;reg  [(ADDR_LENGTH - 1):0] wclk_rgrey_minus2 ;pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_rgrey_minus2(    .data_in        (rgrey_minus2),    .clk_out        (wclock_in),    .sync_data_out  (wclk_sync_rgrey_minus2),    .async_reset    (clear)) ;always@(posedge wclock_in or posedge clear)begin    if (clear)    begin        wclk_rgrey_minus2 <= #`FF_DELAY 0 ;    end    else    begin        wclk_rgrey_minus2 <= #`FF_DELAY wclk_sync_rgrey_minus2 ;    endendassign full_out        = (wgrey_minus1 == wclk_rgrey_minus2) ;assign almost_full_out = (wgrey_addr   == wclk_rgrey_minus2) ;assign two_left_out    = (wgrey_next   == wclk_rgrey_minus2) ;assign three_left_out  = (wgrey_next_plus1 == wclk_rgrey_minus2) ;/*------------------------------------------------------------------------------------------------------------------------------Empty control:Gray coded write address pointer is synchronized to read clock domain and compared to Gray coded read address pointer.If they are equal, fifo is empty.Almost empty control:Synchronized write pointer is also compared to Gray coded next read address. If these two areequal, fifo is almost empty.--------------------------------------------------------------------------------------------------------------------------------*/wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_addr ;reg  [(ADDR_LENGTH - 1):0] rclk_wgrey_addr ;pci_synchronizer_flop #(ADDR_LENGTH, 3) i_synchronizer_reg_wgrey_addr(    .data_in        (wgrey_addr),    .clk_out        (rclock_in),    .sync_data_out  (rclk_sync_wgrey_addr),    .async_reset    (clear)) ;always@(posedge rclock_in or posedge clear)begin    if (clear)        rclk_wgrey_addr <= #`FF_DELAY 3 ;    else        rclk_wgrey_addr <= #`FF_DELAY rclk_sync_wgrey_addr ;endassign almost_empty_out = (rgrey_next == rclk_wgrey_addr) ;assign empty_out        = (rgrey_addr == rclk_wgrey_addr) ;endmodule

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -