📄 pci_wbw_wbr_fifos.v
字号:
wire wbw_empty ;wire wbr_empty ;assign wbw_empty_out = wbw_empty ;assign wbr_empty_out = wbr_empty ;// clear wires for fifoswire wbw_clear = reset_in /*|| wbw_flush_in*/ ; // WBW_FIFO clear flush not usedwire wbr_clear = reset_in /*|| wbr_flush_in*/ ; // WBR_FIFO clear - flush changed from asynchronous to synchronous/*-----------------------------------------------------------------------------------------------------------Definitions of wires for connecting RAM instances-----------------------------------------------------------------------------------------------------------*/wire [39:0] dpram_portA_output ;wire [39:0] dpram_portB_output ;wire [39:0] dpram_portA_input = {wbw_control_in, wbw_cbe_in, wbw_addr_data_in} ;wire [39:0] dpram_portB_input = {wbr_control_in, wbr_be_in, wbr_data_in} ;/*-----------------------------------------------------------------------------------------------------------Fifo output assignments - each ram port provides data for different fifo-----------------------------------------------------------------------------------------------------------*/assign wbw_control_out = dpram_portB_output[39:36] ;assign wbr_control_out = dpram_portA_output[39:36] ;assign wbw_cbe_out = dpram_portB_output[35:32] ;assign wbr_be_out = dpram_portA_output[35:32] ;assign wbw_addr_data_out = dpram_portB_output[31:0] ;assign wbr_data_out = dpram_portA_output[31:0] ;`ifdef WB_RAM_DONT_SHARE /*----------------------------------------------------------------------------------------------------------- Piece of code in this ifdef section is used in applications which can provide enough RAM instances to accomodate four fifos - each occupying its own instance of ram. Ports are connected in such a way, that instances of RAMs can be changed from two port to dual port ( async read/write port ). In that case, write port is always port a and read port is port b. -----------------------------------------------------------------------------------------------------------*/ /*----------------------------------------------------------------------------------------------------------- Pad redundant address lines with zeros. This may seem stupid, but it comes in perfect for FPGA impl. -----------------------------------------------------------------------------------------------------------*/ /* wire [(`WBW_FIFO_RAM_ADDR_LENGTH - WBW_ADDR_LENGTH - 1):0] wbw_addr_prefix = {( `WBW_FIFO_RAM_ADDR_LENGTH - WBW_ADDR_LENGTH){1'b0}} ; wire [(`WBR_FIFO_RAM_ADDR_LENGTH - WBR_ADDR_LENGTH - 1):0] wbr_addr_prefix = {( `WBR_FIFO_RAM_ADDR_LENGTH - WBR_ADDR_LENGTH){1'b0}} ; */ // compose complete port addresses wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] wbw_whole_waddr = wbw_waddr ; wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] wbw_whole_raddr = wbw_raddr ; wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] wbr_whole_waddr = wbr_waddr ; wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] wbr_whole_raddr = wbr_raddr ; wire wbw_read_enable = 1'b1 ; wire wbr_read_enable = 1'b1 ; `ifdef PCI_BIST wire mbist_so_o_internal ; // wires for connection of debug ports on two rams wire mbist_si_i_internal = mbist_so_o_internal ; `endif // instantiate and connect two generic rams - one for wishbone write fifo and one for wishbone read fifo pci_wb_tpram #(`WB_FIFO_RAM_ADDR_LENGTH, 40) wbw_fifo_storage ( // Generic synchronous two-port RAM interface .clk_a(wb_clock_in), .rst_a(reset_in), .ce_a(1'b1), .we_a(wbw_wallow), .oe_a(1'b1), .addr_a(wbw_whole_waddr), .di_a(dpram_portA_input), .do_a(), .clk_b(pci_clock_in), .rst_b(reset_in), .ce_b(wbw_read_enable), .we_b(1'b0), .oe_b(1'b1), .addr_b(wbw_whole_raddr), .di_b(40'h00_0000_0000), .do_b(dpram_portB_output) `ifdef PCI_BIST , .mbist_si_i (mbist_si_i), .mbist_so_o (mbist_so_o_internal), .mbist_ctrl_i (mbist_ctrl_i) `endif ); pci_wb_tpram #(`WB_FIFO_RAM_ADDR_LENGTH, 40) wbr_fifo_storage ( // Generic synchronous two-port RAM interface .clk_a(pci_clock_in), .rst_a(reset_in), .ce_a(1'b1), .we_a(wbr_wallow), .oe_a(1'b1), .addr_a(wbr_whole_waddr), .di_a(dpram_portB_input), .do_a(), .clk_b(wb_clock_in), .rst_b(reset_in), .ce_b(wbr_read_enable), .we_b(1'b0), .oe_b(1'b1), .addr_b(wbr_whole_raddr), .di_b(40'h00_0000_0000), .do_b(dpram_portA_output) `ifdef PCI_BIST , .mbist_si_i (mbist_si_i_internal), .mbist_so_o (mbist_so_o), .mbist_ctrl_i (mbist_ctrl_i) `endif );`else // RAM blocks sharing between two fifos /*----------------------------------------------------------------------------------------------------------- Code section under this ifdef is used for implementation where RAM instances are too expensive. In this case one RAM instance is used for both - WISHBONE read and WISHBONE write fifo. -----------------------------------------------------------------------------------------------------------*/ /*----------------------------------------------------------------------------------------------------------- Address prefix definition - since both FIFOs reside in same RAM instance, storage is separated by MSB addresses. WISHBONE write fifo addresses are padded with zeros on the MSB side ( at least one address line must be used for this ), WISHBONE read fifo addresses are padded with ones on the right ( at least one ). -----------------------------------------------------------------------------------------------------------*/ wire [(`WB_FIFO_RAM_ADDR_LENGTH - WBW_ADDR_LENGTH - 1):0] wbw_addr_prefix = {( `WB_FIFO_RAM_ADDR_LENGTH - WBW_ADDR_LENGTH){1'b0}} ; wire [(`WB_FIFO_RAM_ADDR_LENGTH - WBR_ADDR_LENGTH - 1):0] wbr_addr_prefix = {( `WB_FIFO_RAM_ADDR_LENGTH - WBR_ADDR_LENGTH){1'b1}} ; /*----------------------------------------------------------------------------------------------------------- Port A address generation for RAM instance. RAM instance must be full two port RAM - read and write capability on both sides. Port A is clocked by WISHBONE clock, DIA is input for wbw_fifo, DOA is output for wbr_fifo. Address is multiplexed so operation can be switched between fifos. Default is a read on port. -----------------------------------------------------------------------------------------------------------*/ wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] portA_addr = wbw_wallow ? {wbw_addr_prefix, wbw_waddr} : {wbr_addr_prefix, wbr_raddr} ; /*----------------------------------------------------------------------------------------------------------- Port B is clocked by PCI clock, DIB is input for wbr_fifo, DOB is output for wbw_fifo. Address is multiplexed so operation can be switched between fifos. Default is a read on port. -----------------------------------------------------------------------------------------------------------*/ wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] portB_addr = wbr_wallow ? {wbr_addr_prefix, wbr_waddr} : {wbw_addr_prefix, wbw_raddr} ; wire portA_enable = 1'b1 ; wire portB_enable = 1'b1 ; // instantiate RAM for these two fifos pci_wb_tpram #(`WB_FIFO_RAM_ADDR_LENGTH, 40) wbu_fifo_storage ( // Generic synchronous two-port RAM interface .clk_a(wb_clock_in), .rst_a(reset_in), .ce_a(portA_enable), .we_a(wbw_wallow), .oe_a(1'b1), .addr_a(portA_addr), .di_a(dpram_portA_input), .do_a(dpram_portA_output), .clk_b(pci_clock_in), .rst_b(reset_in), .ce_b(portB_enable), .we_b(wbr_wallow), .oe_b(1'b1), .addr_b(portB_addr), .di_b(dpram_portB_input), .do_b(dpram_portB_output) `ifdef PCI_BIST , .mbist_si_i (mbist_si_i), .mbist_so_o (mbist_so_o), .mbist_ctrl_i (mbist_ctrl_i) `endif );`endif/*-----------------------------------------------------------------------------------------------------------Instantiation of two control logic modules - one for WBW_FIFO and one for WBR_FIFO-----------------------------------------------------------------------------------------------------------*/pci_wbw_fifo_control #(WBW_ADDR_LENGTH) wbw_fifo_ctrl( .rclock_in(pci_clock_in), .wclock_in(wb_clock_in), .renable_in(wbw_renable_in), .wenable_in(wbw_wenable_in), .reset_in(reset_in),// .flush_in(wbw_flush_in), .almost_full_out(wbw_almost_full_out), .full_out(wbw_full_out), .empty_out(wbw_empty), .waddr_out(wbw_waddr), .raddr_out(wbw_raddr), .rallow_out(wbw_rallow), .wallow_out(wbw_wallow));pci_wbr_fifo_control #(WBR_ADDR_LENGTH) wbr_fifo_ctrl( .rclock_in(wb_clock_in), .wclock_in(pci_clock_in), .renable_in(wbr_renable_in), .wenable_in(wbr_wenable_in), .reset_in(reset_in), .flush_in(wbr_flush_in), .empty_out(wbr_empty), .waddr_out(wbr_waddr), .raddr_out(wbr_raddr), .rallow_out(wbr_rallow), .wallow_out(wbr_wallow));// in and out transaction counters and grey codesreg [(WBW_ADDR_LENGTH-2):0] inGreyCount ;reg [(WBW_ADDR_LENGTH-2):0] outGreyCount ;wire [(WBW_ADDR_LENGTH-2):0] inNextGreyCount = {wbw_inTransactionCount[(WBW_ADDR_LENGTH-2)], wbw_inTransactionCount[(WBW_ADDR_LENGTH-2):1] ^ wbw_inTransactionCount[(WBW_ADDR_LENGTH-3):0]} ;wire [(WBW_ADDR_LENGTH-2):0] outNextGreyCount = {wbw_outTransactionCount[(WBW_ADDR_LENGTH-2)], wbw_outTransactionCount[(WBW_ADDR_LENGTH-2):1] ^ wbw_outTransactionCount[(WBW_ADDR_LENGTH-3):0]} ;// input transaction counter increment - when last data of transaction is written to fifowire in_count_en = wbw_wallow && wbw_last_in ;// output transaction counter increment - when last data is on top of fifo and read from itwire out_count_en = wbw_renable_in && wbw_last_out ;// register holding grey coded count of incoming transactionsalways@(posedge wb_clock_in or posedge wbw_clear)begin if (wbw_clear) begin inGreyCount <= #3 0 ; end else if (in_count_en) inGreyCount <= #3 inNextGreyCount ;endwire [(WBW_ADDR_LENGTH-2):0] pci_clk_sync_inGreyCount ;reg [(WBW_ADDR_LENGTH-2):0] pci_clk_inGreyCount ;pci_synchronizer_flop #((WBW_ADDR_LENGTH - 1), 0) i_synchronizer_reg_inGreyCount( .data_in (inGreyCount), .clk_out (pci_clock_in), .sync_data_out (pci_clk_sync_inGreyCount), .async_reset (wbw_clear)) ;always@(posedge pci_clock_in or posedge wbw_clear)begin if (wbw_clear) pci_clk_inGreyCount <= #`FF_DELAY 0 ; else pci_clk_inGreyCount <= # `FF_DELAY pci_clk_sync_inGreyCount ;end// register holding grey coded count of outgoing transactionsalways@(posedge pci_clock_in or posedge wbw_clear)begin if (wbw_clear) begin outGreyCount <= #`FF_DELAY 0 ; end else if (out_count_en) outGreyCount <= #`FF_DELAY outNextGreyCount ;end// incoming transactions counteralways@(posedge wb_clock_in or posedge wbw_clear)begin if (wbw_clear) wbw_inTransactionCount <= #`FF_DELAY 1 ; else if (in_count_en) wbw_inTransactionCount <= #`FF_DELAY wbw_inTransactionCount + 1'b1 ;end// outgoing transactions counteralways@(posedge pci_clock_in or posedge wbw_clear)begin if (wbw_clear) wbw_outTransactionCount <= 1 ; else if (out_count_en) wbw_outTransactionCount <= #`FF_DELAY wbw_outTransactionCount + 1'b1 ;endassign wbw_transaction_ready_out = pci_clk_inGreyCount != outGreyCount ;endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -