⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pci_wbw_wbr_fifos.v

📁 这是用pci-wishbone核和16450串口核在xilinx的fpga上实现的串口程序
💻 V
📖 第 1 页 / 共 2 页
字号:
wire wbw_empty ;wire wbr_empty ;assign wbw_empty_out = wbw_empty ;assign wbr_empty_out = wbr_empty ;// clear wires for fifoswire wbw_clear = reset_in /*|| wbw_flush_in*/ ; // WBW_FIFO clear flush not usedwire wbr_clear = reset_in /*|| wbr_flush_in*/ ; // WBR_FIFO clear - flush changed from asynchronous to synchronous/*-----------------------------------------------------------------------------------------------------------Definitions of wires for connecting RAM instances-----------------------------------------------------------------------------------------------------------*/wire [39:0] dpram_portA_output ;wire [39:0] dpram_portB_output ;wire [39:0] dpram_portA_input = {wbw_control_in, wbw_cbe_in, wbw_addr_data_in} ;wire [39:0] dpram_portB_input = {wbr_control_in, wbr_be_in, wbr_data_in} ;/*-----------------------------------------------------------------------------------------------------------Fifo output assignments - each ram port provides data for different fifo-----------------------------------------------------------------------------------------------------------*/assign wbw_control_out = dpram_portB_output[39:36] ;assign wbr_control_out = dpram_portA_output[39:36] ;assign wbw_cbe_out     = dpram_portB_output[35:32] ;assign wbr_be_out      = dpram_portA_output[35:32] ;assign wbw_addr_data_out = dpram_portB_output[31:0] ;assign wbr_data_out      = dpram_portA_output[31:0] ;`ifdef WB_RAM_DONT_SHARE    /*-----------------------------------------------------------------------------------------------------------    Piece of code in this ifdef section is used in applications which can provide enough RAM instances to    accomodate four fifos - each occupying its own instance of ram. Ports are connected in such a way,    that instances of RAMs can be changed from two port to dual port ( async read/write port ). In that case,    write port is always port a and read port is port b.    -----------------------------------------------------------------------------------------------------------*/    /*-----------------------------------------------------------------------------------------------------------    Pad redundant address lines with zeros. This may seem stupid, but it comes in perfect for FPGA impl.    -----------------------------------------------------------------------------------------------------------*/    /*    wire [(`WBW_FIFO_RAM_ADDR_LENGTH - WBW_ADDR_LENGTH - 1):0] wbw_addr_prefix = {( `WBW_FIFO_RAM_ADDR_LENGTH - WBW_ADDR_LENGTH){1'b0}} ;    wire [(`WBR_FIFO_RAM_ADDR_LENGTH - WBR_ADDR_LENGTH - 1):0] wbr_addr_prefix = {( `WBR_FIFO_RAM_ADDR_LENGTH - WBR_ADDR_LENGTH){1'b0}} ;    */    // compose complete port addresses    wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] wbw_whole_waddr = wbw_waddr ;    wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] wbw_whole_raddr = wbw_raddr ;    wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] wbr_whole_waddr = wbr_waddr ;    wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] wbr_whole_raddr = wbr_raddr ;    wire wbw_read_enable = 1'b1 ;    wire wbr_read_enable = 1'b1 ;    `ifdef PCI_BIST    wire mbist_so_o_internal ; // wires for connection of debug ports on two rams    wire mbist_si_i_internal = mbist_so_o_internal ;    `endif    // instantiate and connect two generic rams - one for wishbone write fifo and one for wishbone read fifo    pci_wb_tpram #(`WB_FIFO_RAM_ADDR_LENGTH, 40) wbw_fifo_storage    (        // Generic synchronous two-port RAM interface        .clk_a(wb_clock_in),        .rst_a(reset_in),        .ce_a(1'b1),        .we_a(wbw_wallow),        .oe_a(1'b1),        .addr_a(wbw_whole_waddr),        .di_a(dpram_portA_input),        .do_a(),        .clk_b(pci_clock_in),        .rst_b(reset_in),        .ce_b(wbw_read_enable),        .we_b(1'b0),        .oe_b(1'b1),        .addr_b(wbw_whole_raddr),        .di_b(40'h00_0000_0000),        .do_b(dpram_portB_output)    `ifdef PCI_BIST        ,        .mbist_si_i       (mbist_si_i),        .mbist_so_o       (mbist_so_o_internal),        .mbist_ctrl_i       (mbist_ctrl_i)    `endif    );    pci_wb_tpram #(`WB_FIFO_RAM_ADDR_LENGTH, 40) wbr_fifo_storage    (        // Generic synchronous two-port RAM interface        .clk_a(pci_clock_in),        .rst_a(reset_in),        .ce_a(1'b1),        .we_a(wbr_wallow),        .oe_a(1'b1),        .addr_a(wbr_whole_waddr),        .di_a(dpram_portB_input),        .do_a(),        .clk_b(wb_clock_in),        .rst_b(reset_in),        .ce_b(wbr_read_enable),        .we_b(1'b0),        .oe_b(1'b1),        .addr_b(wbr_whole_raddr),        .di_b(40'h00_0000_0000),        .do_b(dpram_portA_output)    `ifdef PCI_BIST        ,        .mbist_si_i       (mbist_si_i_internal),        .mbist_so_o       (mbist_so_o),        .mbist_ctrl_i       (mbist_ctrl_i)    `endif    );`else // RAM blocks sharing between two fifos    /*-----------------------------------------------------------------------------------------------------------    Code section under this ifdef is used for implementation where RAM instances are too expensive. In this    case one RAM instance is used for both - WISHBONE read and WISHBONE write fifo.    -----------------------------------------------------------------------------------------------------------*/    /*-----------------------------------------------------------------------------------------------------------    Address prefix definition - since both FIFOs reside in same RAM instance, storage is separated by MSB    addresses. WISHBONE write fifo addresses are padded with zeros on the MSB side ( at least one address line    must be used for this ), WISHBONE read fifo addresses are padded with ones on the right ( at least one ).    -----------------------------------------------------------------------------------------------------------*/    wire [(`WB_FIFO_RAM_ADDR_LENGTH - WBW_ADDR_LENGTH - 1):0] wbw_addr_prefix = {( `WB_FIFO_RAM_ADDR_LENGTH - WBW_ADDR_LENGTH){1'b0}} ;    wire [(`WB_FIFO_RAM_ADDR_LENGTH - WBR_ADDR_LENGTH - 1):0] wbr_addr_prefix = {( `WB_FIFO_RAM_ADDR_LENGTH - WBR_ADDR_LENGTH){1'b1}} ;    /*-----------------------------------------------------------------------------------------------------------    Port A address generation for RAM instance. RAM instance must be full two port RAM - read and write capability    on both sides.    Port A is clocked by WISHBONE clock, DIA is input for wbw_fifo, DOA is output for wbr_fifo.    Address is multiplexed so operation can be switched between fifos. Default is a read on port.    -----------------------------------------------------------------------------------------------------------*/    wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] portA_addr = wbw_wallow ? {wbw_addr_prefix, wbw_waddr} : {wbr_addr_prefix, wbr_raddr} ;    /*-----------------------------------------------------------------------------------------------------------    Port B is clocked by PCI clock, DIB is input for wbr_fifo, DOB is output for wbw_fifo.    Address is multiplexed so operation can be switched between fifos. Default is a read on port.    -----------------------------------------------------------------------------------------------------------*/    wire [(`WB_FIFO_RAM_ADDR_LENGTH-1):0] portB_addr  = wbr_wallow ? {wbr_addr_prefix, wbr_waddr} : {wbw_addr_prefix, wbw_raddr} ;    wire portA_enable      = 1'b1 ;    wire portB_enable      = 1'b1 ;    // instantiate RAM for these two fifos    pci_wb_tpram #(`WB_FIFO_RAM_ADDR_LENGTH, 40) wbu_fifo_storage    (        // Generic synchronous two-port RAM interface        .clk_a(wb_clock_in),        .rst_a(reset_in),        .ce_a(portA_enable),        .we_a(wbw_wallow),        .oe_a(1'b1),        .addr_a(portA_addr),        .di_a(dpram_portA_input),        .do_a(dpram_portA_output),        .clk_b(pci_clock_in),        .rst_b(reset_in),        .ce_b(portB_enable),        .we_b(wbr_wallow),        .oe_b(1'b1),        .addr_b(portB_addr),        .di_b(dpram_portB_input),        .do_b(dpram_portB_output)    `ifdef PCI_BIST        ,        .mbist_si_i       (mbist_si_i),        .mbist_so_o       (mbist_so_o),        .mbist_ctrl_i       (mbist_ctrl_i)    `endif    );`endif/*-----------------------------------------------------------------------------------------------------------Instantiation of two control logic modules - one for WBW_FIFO and one for WBR_FIFO-----------------------------------------------------------------------------------------------------------*/pci_wbw_fifo_control #(WBW_ADDR_LENGTH) wbw_fifo_ctrl(    .rclock_in(pci_clock_in),    .wclock_in(wb_clock_in),    .renable_in(wbw_renable_in),    .wenable_in(wbw_wenable_in),    .reset_in(reset_in),//    .flush_in(wbw_flush_in),    .almost_full_out(wbw_almost_full_out),    .full_out(wbw_full_out),    .empty_out(wbw_empty),    .waddr_out(wbw_waddr),    .raddr_out(wbw_raddr),    .rallow_out(wbw_rallow),    .wallow_out(wbw_wallow));pci_wbr_fifo_control #(WBR_ADDR_LENGTH) wbr_fifo_ctrl(   .rclock_in(wb_clock_in),    .wclock_in(pci_clock_in),    .renable_in(wbr_renable_in),    .wenable_in(wbr_wenable_in),    .reset_in(reset_in),    .flush_in(wbr_flush_in),    .empty_out(wbr_empty),    .waddr_out(wbr_waddr),    .raddr_out(wbr_raddr),    .rallow_out(wbr_rallow),    .wallow_out(wbr_wallow));// in and out transaction counters and grey codesreg  [(WBW_ADDR_LENGTH-2):0] inGreyCount ;reg  [(WBW_ADDR_LENGTH-2):0] outGreyCount ;wire [(WBW_ADDR_LENGTH-2):0] inNextGreyCount = {wbw_inTransactionCount[(WBW_ADDR_LENGTH-2)], wbw_inTransactionCount[(WBW_ADDR_LENGTH-2):1] ^ wbw_inTransactionCount[(WBW_ADDR_LENGTH-3):0]} ;wire [(WBW_ADDR_LENGTH-2):0] outNextGreyCount = {wbw_outTransactionCount[(WBW_ADDR_LENGTH-2)], wbw_outTransactionCount[(WBW_ADDR_LENGTH-2):1] ^ wbw_outTransactionCount[(WBW_ADDR_LENGTH-3):0]} ;// input transaction counter increment - when last data of transaction is written to fifowire in_count_en  = wbw_wallow && wbw_last_in ;// output transaction counter increment - when last data is on top of fifo and read from itwire out_count_en = wbw_renable_in && wbw_last_out ;// register holding grey coded count of incoming transactionsalways@(posedge wb_clock_in or posedge wbw_clear)begin    if (wbw_clear)    begin        inGreyCount <= #3 0 ;    end    else    if (in_count_en)        inGreyCount <= #3 inNextGreyCount ;endwire [(WBW_ADDR_LENGTH-2):0] pci_clk_sync_inGreyCount ;reg  [(WBW_ADDR_LENGTH-2):0] pci_clk_inGreyCount ;pci_synchronizer_flop #((WBW_ADDR_LENGTH - 1), 0) i_synchronizer_reg_inGreyCount(    .data_in        (inGreyCount),    .clk_out        (pci_clock_in),    .sync_data_out  (pci_clk_sync_inGreyCount),    .async_reset    (wbw_clear)) ;always@(posedge pci_clock_in or posedge wbw_clear)begin    if (wbw_clear)        pci_clk_inGreyCount <= #`FF_DELAY 0 ;    else        pci_clk_inGreyCount <= # `FF_DELAY pci_clk_sync_inGreyCount ;end// register holding grey coded count of outgoing transactionsalways@(posedge pci_clock_in or posedge wbw_clear)begin    if (wbw_clear)    begin        outGreyCount <= #`FF_DELAY 0 ;    end    else    if (out_count_en)        outGreyCount <= #`FF_DELAY outNextGreyCount ;end// incoming transactions counteralways@(posedge wb_clock_in or posedge wbw_clear)begin    if (wbw_clear)        wbw_inTransactionCount <= #`FF_DELAY 1 ;    else    if (in_count_en)        wbw_inTransactionCount <= #`FF_DELAY wbw_inTransactionCount + 1'b1 ;end// outgoing transactions counteralways@(posedge pci_clock_in or posedge wbw_clear)begin    if (wbw_clear)        wbw_outTransactionCount <= 1 ;    else    if (out_count_en)        wbw_outTransactionCount <= #`FF_DELAY wbw_outTransactionCount + 1'b1 ;endassign wbw_transaction_ready_out = pci_clk_inGreyCount != outGreyCount ;endmodule

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -