⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pci_conf_space.v

📁 这是用pci-wishbone核和16450串口核在xilinx的fpga上实现的串口程序
💻 V
📖 第 1 页 / 共 5 页
字号:
            wire				pci_ba2_bit0 = 1'b0 ;            wire	[31 : 12]	pci_am2 = 20'h0000_0 ;            wire	[31 : 12]	pci_ta2 = 20'h0000_0 ;`endif`ifdef		PCI_IMAGE3			reg		[2 : 1]		pci_img_ctrl3_bit2_1 ;			reg		[31 : 12]	pci_ba3_bit31_12 ;	`ifdef	HOST			reg					pci_ba3_bit0 ;	`else			wire				pci_ba3_bit0 = `PCI_BA3_MEM_IO ;	`endif			reg		[31 : 12]	pci_am3 ;			reg		[31 : 12]	pci_ta3 ;`else            wire	[2 : 1]		pci_img_ctrl3_bit2_1 = 2'b00 ;			wire	[31 : 12]	pci_ba3_bit31_12 = 20'h0000_0 ;            wire				pci_ba3_bit0 = 1'b0 ;            wire	[31 : 12]	pci_am3 = 20'h0000_0 ;            wire	[31 : 12]	pci_ta3 = 20'h0000_0 ;`endif`ifdef		PCI_IMAGE4			reg		[2 : 1]		pci_img_ctrl4_bit2_1 ;			reg		[31 : 12]	pci_ba4_bit31_12 ;	`ifdef	HOST			reg					pci_ba4_bit0 ;	`else			wire				pci_ba4_bit0 = `PCI_BA4_MEM_IO ;	`endif			reg		[31 : 12]	pci_am4 ;			reg		[31 : 12]	pci_ta4 ;`else            wire	[2 : 1]		pci_img_ctrl4_bit2_1 = 2'b00 ;			wire	[31 : 12]	pci_ba4_bit31_12 = 20'h0000_0 ;            wire				pci_ba4_bit0 = 1'b0 ;            wire	[31 : 12]	pci_am4 = 20'h0000_0 ;            wire	[31 : 12]	pci_ta4 = 20'h0000_0 ;`endif`ifdef		PCI_IMAGE5			reg		[2 : 1]		pci_img_ctrl5_bit2_1 ;			reg		[31 : 12]	pci_ba5_bit31_12 ;	`ifdef	HOST			reg					pci_ba5_bit0 ;	`else			wire				pci_ba5_bit0 = `PCI_BA5_MEM_IO ;	`endif			reg		[31 : 12]	pci_am5 ;			reg		[31 : 12]	pci_ta5 ;`else            wire	[2 : 1]		pci_img_ctrl5_bit2_1 = 2'b00 ;			wire	[31 : 12]	pci_ba5_bit31_12 = 20'h0000_0 ;            wire				pci_ba5_bit0 = 1'b0 ;            wire	[31 : 12]	pci_am5 = 20'h0000_0 ;            wire	[31 : 12]	pci_ta5 = 20'h0000_0 ;`endif			reg		[31 : 24]	pci_err_cs_bit31_24 ;			reg					pci_err_cs_bit10 ;			reg					pci_err_cs_bit9 ;			reg					pci_err_cs_bit8 ;			reg					pci_err_cs_bit0 ;			reg		[31 : 0]	pci_err_addr ;			reg		[31 : 0]	pci_err_data ;/*###########################################################################################################-------------------------------------------------------------------------------------------------------------WISHBONE Slave configuration registers	There are also some registers with NOT all bits implemented and therefor uses _bitX or _bitX2_X1 to	sign which bit or range of bits are implemented. Some special cases and examples are described below!-------------------------------------------------------------------------------------------------------------###########################################################################################################*//*-----------------------------------------------------------------------------------------------------------[800h-85Ch]	Depending on defines (WB_IMAGE1 or .. or WB_IMAGE4 or WB_IMAGE5) in constants.v file, there are	registers corresponding to each IMAGE defined to REG and parameter wb_image_X assigned to '1'.	The maximum number of images is "6". By default there are first two images used and the first (WB_IMAGE0)	is assigned to Configuration space! With a 'define' WB_IMAGEx you choose the number of used WB IMAGES in	a bridge without WB_IMAGE0 (e.g. WB_IMAGE3 tells, that WB_IMAGE1, WB_IMAGE2 and WB_IMAGE3 are used for	mapping the space from PCI to WB. Offcourse, WB_IMAGE0 is assigned to Configuration space). That leave	us WB_IMAGE5 as the maximum number of images.	When error occurs, WISHBONE ERR_ADDR and ERR_DATA registers stores address and data on the bus that	caused error. While ERR_CS register stores Byte Enables and Bus Command in the MSByte. In bits 10, 9	and 8 it reports Retry Counter Expired (for posted writes), Error Source (Master Abort) and Error	Report Signal (signals that error has occured) respectively. With bit 0 we enable Error Reporting	mechanism.-----------------------------------------------------------------------------------------------------------*/// WB_IMAGE0 is always assigned to config. space or is not used			wire	[2 : 0]		wb_img_ctrl0_bit2_0 = 3'b000 ; // NO addr.transl., pre-fetch and read-line			wire	[31 : 12]	wb_ba0_bit31_12 = `WB_CONFIGURATION_BASE ;			wire				wb_ba0_bit0 = 0 ; // config. space is MEMORY space			wire	[31 : 12]	wb_am0 = `WB_AM0 ; // 4KBytes of configuration space is minimum			wire	[31 : 12]	wb_ta0 = 20'h0000_0 ; // NO address translation needed// WB_IMAGE1 is included by default meanwhile others are optional !			reg		[2 : 0]		wb_img_ctrl1_bit2_0 ;			reg		[31 : 12]	wb_ba1_bit31_12 ;			reg					wb_ba1_bit0 ;			reg		[31 : 12]	wb_am1 ;			reg		[31 : 12]	wb_ta1 ;`ifdef		WB_IMAGE2			reg		[2 : 0]		wb_img_ctrl2_bit2_0 ;			reg		[31 : 12]	wb_ba2_bit31_12 ;			reg					wb_ba2_bit0 ;			reg		[31 : 12]	wb_am2 ;			reg		[31 : 12]	wb_ta2 ;`else            wire	[2 : 0]		wb_img_ctrl2_bit2_0 = 3'b000 ;			wire	[31 : 12]	wb_ba2_bit31_12 = 20'h0000_0 ;            wire				wb_ba2_bit0 = 1'b0 ;            wire	[31 : 12]	wb_am2 = 20'h0000_0 ;            wire	[31 : 12]	wb_ta2 = 20'h0000_0 ;`endif`ifdef		WB_IMAGE3			reg		[2 : 0]		wb_img_ctrl3_bit2_0 ;			reg		[31 : 12]	wb_ba3_bit31_12 ;			reg					wb_ba3_bit0 ;			reg		[31 : 12]	wb_am3 ;			reg		[31 : 12]	wb_ta3 ;`else            wire	[2 : 0]		wb_img_ctrl3_bit2_0 = 3'b000 ;			wire	[31 : 12]	wb_ba3_bit31_12 = 20'h0000_0 ;            wire				wb_ba3_bit0 = 1'b0 ;            wire	[31 : 12]	wb_am3 = 20'h0000_0 ;            wire	[31 : 12]	wb_ta3 = 20'h0000_0 ;`endif`ifdef		WB_IMAGE4			reg		[2 : 0]		wb_img_ctrl4_bit2_0 ;			reg		[31 : 12]	wb_ba4_bit31_12 ;			reg					wb_ba4_bit0 ;			reg		[31 : 12]	wb_am4 ;			reg		[31 : 12]	wb_ta4 ;`else            wire	[2 : 0]		wb_img_ctrl4_bit2_0 = 3'b000 ;			wire	[31 : 12]	wb_ba4_bit31_12 = 20'h0000_0 ;            wire				wb_ba4_bit0 = 1'b0 ;            wire	[31 : 12]	wb_am4 = 20'h0000_0 ;            wire	[31 : 12]	wb_ta4 = 20'h0000_0 ;`endif`ifdef		WB_IMAGE5			reg		[2 : 0]		wb_img_ctrl5_bit2_0 ;			reg		[31 : 12]	wb_ba5_bit31_12 ;			reg					wb_ba5_bit0 ;			reg		[31 : 12]	wb_am5 ;			reg		[31 : 12]	wb_ta5 ;`else            wire	[2 : 0]		wb_img_ctrl5_bit2_0 = 3'b000 ;			wire	[31 : 12]	wb_ba5_bit31_12 = 20'h0000_0 ;            wire				wb_ba5_bit0 = 1'b0 ;            wire	[31 : 12]	wb_am5 = 20'h0000_0 ;            wire	[31 : 12]	wb_ta5 = 20'h0000_0 ;`endif			reg		[31 : 24]	wb_err_cs_bit31_24 ;/*			reg					wb_err_cs_bit10 ;*/			reg					wb_err_cs_bit9 ;			reg					wb_err_cs_bit8 ;			reg					wb_err_cs_bit0 ;			reg		[31 : 0]	wb_err_addr ;			reg		[31 : 0]	wb_err_data ;/*###########################################################################################################-------------------------------------------------------------------------------------------------------------Configuration Cycle address register	There are also some registers with NOT all bits implemented and therefor uses _bitX or _bitX2_X1 to	sign which bit or range of bits are implemented.-------------------------------------------------------------------------------------------------------------###########################################################################################################*//*-----------------------------------------------------------------------------------------------------------[860h-868h]	PCI bridge must ignore Type 1 configuration cycles (Master Abort) since they are used for PCI to PCI	bridges. This is single function device, that means responding on configuration cycles to all functions	(or responding only to function 0). Configuration address register for generating configuration cycles	is prepared for all options (it includes Bus Number, Device, Function, Offset and Type).	Interrupt acknowledge register stores interrupt vector data returned during Interrupt Acknowledge cycle.-----------------------------------------------------------------------------------------------------------*/`ifdef		HOST			reg		[23 : 2]	cnf_addr_bit23_2 ;			reg					cnf_addr_bit0 ;`else // GUEST			wire	[23 : 2]	cnf_addr_bit23_2	= 22'h0 ;			wire				cnf_addr_bit0		= 1'b0 ;`endif			// reg	[31 : 0]	cnf_data ;		IMPLEMENTED elsewhere !!!!!			// reg	[31 : 0]	int_ack ;		IMPLEMENTED elsewhere !!!!!/*###########################################################################################################-------------------------------------------------------------------------------------------------------------General Interrupt registers	There are also some registers with NOT all bits implemented and therefor uses _bitX or _bitX2_X1 to	sign which bit or range of bits are implemented.-------------------------------------------------------------------------------------------------------------###########################################################################################################*//*-----------------------------------------------------------------------------------------------------------[FF8h-FFCh]	Bit 31 in the Interrupt Control register is set by software and used to generate SOFT RESET. Other 4	bits are used to enable interrupt generations.	5 LSbits in the Interrupt Status register are indicating System Error Int, Parity Error Int, PCI & WB	Error Int and Inerrupt respecively. System and Parity errors are implented only in HOST bridge	implementations!-----------------------------------------------------------------------------------------------------------*/			reg					icr_bit31 ;`ifdef		HOST			reg		[4 : 3]		icr_bit4_3              ;			reg		[4 : 3]		isr_bit4_3              ;			reg		[2 : 0]		icr_bit2_0              ;			reg		[2 : 0]		isr_bit2_0              ;`else // GUEST			wire	[4 : 3]		icr_bit4_3 = 2'h0 ;			wire	[4 : 3]		isr_bit4_3 = 2'h0 ;			reg		[2 : 0]		icr_bit2_0 ;			reg		[2 : 0]		isr_bit2_0 ;`endif/*###########################################################################################################-------------------------------------------------------------------------------------------------------------Initialization complete identifier    When using I2C or similar initialisation mechanism,    the bridge must not respond to transaction requests on PCI bus,    not even to configuration cycles.    Therefore, only when init_complete is set, the bridge starts    participating on the PCI bus as an active device.    Two additional flip flops are also provided for GUEST implementation,    to synchronize to the pci clock after PCI reset is asynchronously de-asserted.-------------------------------------------------------------------------------------------------------------###########################################################################################################*/`ifdef GUESTreg rst_inactive_sync ;reg rst_inactive      ;`elsewire rst_inactive = 1'b1 ;`endifreg init_complete   ;wire    sync_init_complete ;`ifdef HOSTassign  wb_init_complete_out = init_complete ;pci_synchronizer_flop #(1, 0) i_pci_init_complete_sync(    .data_in        (   init_complete       ),     .clk_out        (   pci_clk             ),     .sync_data_out  (   sync_init_complete  ),     .async_reset    (   reset               ));reg pci_init_complete_out ;always@(posedge pci_clk or posedge reset)begin    if (reset)        pci_init_complete_out <= 1'b0 ;    else        pci_init_complete_out <= sync_init_complete ;end`endif`ifdef GUESTassign  pci_init_complete_out = init_complete ;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -