📄 pci_wbw_fifo_control.v
字号:
////////////////////////////////////////////////////////////////////////// //////// File name "wbw_fifo_control.v" //////// //////// This file is part of the "PCI bridge" project //////// http://www.opencores.org/cores/pci/ //////// //////// Author(s): //////// - Miha Dolenc (mihad@opencores.org) //////// //////// All additional information is avaliable in the README //////// file. //////// //////// ////////////////////////////////////////////////////////////////////////////// //////// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org //////// //////// This source file may be used and distributed without //////// restriction provided that this copyright statement is not //////// removed from the file and that any derivative work contains //////// the original copyright notice and the associated disclaimer. //////// //////// This source file is free software; you can redistribute it //////// and/or modify it under the terms of the GNU Lesser General //////// Public License as published by the Free Software Foundation; //////// either version 2.1 of the License, or (at your option) any //////// later version. //////// //////// This source is distributed in the hope that it will be //////// useful, but WITHOUT ANY WARRANTY; without even the implied //////// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //////// PURPOSE. See the GNU Lesser General Public License for more //////// details. //////// //////// You should have received a copy of the GNU Lesser General //////// Public License along with this source; if not, download it //////// from http://www.opencores.org/lgpl.shtml //////// ////////////////////////////////////////////////////////////////////////////// CVS Revision History//// $Log: pci_wbw_fifo_control.v,v $// Revision 1.4 2003/08/14 13:06:03 simons// synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.//// Revision 1.3 2003/07/29 08:20:11 mihad// Found and simulated the problem in the synchronization logic.// Repaired the synchronization logic in the FIFOs.//// Revision 1.2 2003/03/26 13:16:18 mihad// Added the reset value parameter to the synchronizer flop module.// Added resets to all synchronizer flop instances.// Repaired initial sync value in fifos.//// Revision 1.1 2003/01/27 16:49:31 mihad// Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.//// Revision 1.6 2002/11/27 20:36:13 mihad// Changed the code a bit to make it more readable.// Functionality not changed in any way.// More robust synchronization in fifos is still pending.//// Revision 1.5 2002/09/30 16:03:04 mihad// Added meta flop module for easier meta stable FF identification during synthesis//// Revision 1.4 2002/09/25 15:53:52 mihad// Removed all logic from asynchronous reset network//// Revision 1.3 2002/02/01 15:25:14 mihad// Repaired a few bugs, updated specification, added test bench files and design document//// Revision 1.2 2001/10/05 08:14:30 mihad// Updated all files with inclusion of timescale file for simulation purposes.//// Revision 1.1.1.1 2001/10/02 15:33:47 mihad// New project directory structure/////* FIFO_CONTROL module provides read/write address and status generation for FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */`include "pci_constants.v"// synopsys translate_off`include "timescale.v"// synopsys translate_onmodule pci_wbw_fifo_control( rclock_in, wclock_in, renable_in, wenable_in, reset_in, almost_full_out, full_out, empty_out, waddr_out, raddr_out, rallow_out, wallow_out);parameter ADDR_LENGTH = 7 ;// independent clock inputs - rclock_in = read clock, wclock_in = write clockinput rclock_in, wclock_in;// enable inputs - read address changes on rising edge of rclock_in when reads are allowed// write address changes on rising edge of wclock_in when writes are allowedinput renable_in, wenable_in ;// reset inputinput reset_in;// flush input// input flush_in ; // not used// almost full and empy status outputsoutput almost_full_out ;// full and empty status outputsoutput full_out, empty_out;// read and write addresses outputsoutput [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;// read and write allow outputsoutput rallow_out, wallow_out ;// read address registerreg [(ADDR_LENGTH - 1):0] raddr ;// write address registerreg [(ADDR_LENGTH - 1):0] waddr;assign waddr_out = waddr ;// grey code registersreg [(ADDR_LENGTH - 1):0] wgrey_addr ; // current// grey code register for next write addressreg [(ADDR_LENGTH - 1):0] wgrey_next ; // next// next write gray address calculation - bitwise xor between address and shifted addresswire [(ADDR_LENGTH - 2):0] calc_wgrey_next = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;// grey code pipeline for read addressreg [(ADDR_LENGTH - 1):0] rgrey_minus1 ; // one before currentreg [(ADDR_LENGTH - 1):0] rgrey_addr ; // currentreg [(ADDR_LENGTH - 1):0] rgrey_next ; // next// next read gray address calculation - bitwise xor between address and shifted addresswire [(ADDR_LENGTH - 2):0] calc_rgrey_next = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;// write allow wire - writes are allowed when fifo is not fullassign wallow_out = wenable_in & ~full_out ;// clear generation for FFs and registerswire clear = reset_in ;//rallow generationassign rallow_out = renable_in & ~empty_out ; // reads allowed if read enable is high and FIFO is not empty// at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary// when FIFO is empty, this register provides actual read address, so first location can be readreg [(ADDR_LENGTH - 1):0] raddr_plus_one ;// address output mux - when FIFO is empty, current actual address is driven out, when it is non - empty next address is driven out// done for zero wait state burstassign raddr_out = rallow_out ? raddr_plus_one : raddr ;always@(posedge rclock_in or posedge clear)begin if (clear) begin raddr_plus_one <= #`FF_DELAY 4 ; raddr <= #`FF_DELAY 3 ; end else if (rallow_out) begin raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ; raddr <= #`FF_DELAY raddr_plus_one ; endend/*-----------------------------------------------------------------------------------------------Read address control consists of Read address counter and Grey Address pipelineThere are 3 Grey addresses: - rgrey_minus1 is Grey Code of address one before current address - rgrey_addr is Grey Code of current read address - rgrey_next is Grey Code of next read address--------------------------------------------------------------------------------------------------*/// grey coded address pipeline for status generation in read clock domainalways@(posedge rclock_in or posedge clear)begin if (clear) begin // initial value is 0 rgrey_minus1 <= #1 0 ; rgrey_addr <= #1 1 ; rgrey_next <= #`FF_DELAY 3 ; end else if (rallow_out) begin rgrey_minus1 <= #1 rgrey_addr ; rgrey_addr <= #1 rgrey_next ; rgrey_next <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ; endend/*--------------------------------------------------------------------------------------------Write address control consists of write address counter and Grey Code Register----------------------------------------------------------------------------------------------*/// grey coded address pipeline for status generation in write clock domainalways@(posedge wclock_in or posedge clear)begin if (clear) begin wgrey_addr <= #`FF_DELAY 1 ; wgrey_next <= #1 3 ; end else if (wallow_out) begin wgrey_addr <= #`FF_DELAY wgrey_next ; wgrey_next <= #1 {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ; endend// write address counter - nothing special - initial value is important thoughalways@(posedge wclock_in or posedge clear)begin if (clear) // initial value 4 waddr <= #`FF_DELAY 3 ; else if (wallow_out) waddr <= #`FF_DELAY waddr + 1'b1 ;end/*------------------------------------------------------------------------------------------------------------------------------Gray coded address of read address decremented by 1 is synchronized to write clock domain and compared to:- Gray coded write address. If they are equal, fifo is full.- Gray coded next write address. If they are equal, fifo is almost full.--------------------------------------------------------------------------------------------------------------------------------*/wire [(ADDR_LENGTH - 1):0] wclk_sync_rgrey_minus1 ;reg [(ADDR_LENGTH - 1):0] wclk_rgrey_minus1 ;pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_rgrey_minus1( .data_in (rgrey_minus1), .clk_out (wclock_in), .sync_data_out (wclk_sync_rgrey_minus1), .async_reset (clear)) ;always@(posedge wclock_in or posedge clear)begin if (clear) begin wclk_rgrey_minus1 <= #`FF_DELAY 0 ; end else begin wclk_rgrey_minus1 <= #`FF_DELAY wclk_sync_rgrey_minus1 ; endendassign full_out = (wgrey_addr == wclk_rgrey_minus1) ;assign almost_full_out = (wgrey_next == wclk_rgrey_minus1) ;/*------------------------------------------------------------------------------------------------------------------------------Empty control:Gray coded address of next write address is synchronized to read clock domain and compared to Gray coded next read address.If they are equal, fifo is empty.--------------------------------------------------------------------------------------------------------------------------------*/wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_next ;reg [(ADDR_LENGTH - 1):0] rclk_wgrey_next ;pci_synchronizer_flop #(ADDR_LENGTH, 3) i_synchronizer_reg_wgrey_next( .data_in (wgrey_next), .clk_out (rclock_in), .sync_data_out (rclk_sync_wgrey_next), .async_reset (clear)) ;always@(posedge rclock_in or posedge clear)begin if (clear) rclk_wgrey_next <= #`FF_DELAY 3 ; else rclk_wgrey_next <= #`FF_DELAY rclk_sync_wgrey_next ;endassign empty_out = (rgrey_next == rclk_wgrey_next) ;endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -