⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bdivmod.c

📁 a very popular packet of cryptography tools,it encloses the most common used algorithm and protocols
💻 C
字号:
/* mpn/bdivmod.c: mpn_bdivmod for computing U/V mod 2^d.Copyright 1991, 1993, 1994, 1995, 1996, 1999, 2000, 2001, 2002 Free SoftwareFoundation, Inc.This file is part of the GNU MP Library.The GNU MP Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Lesser General Public License as published bythe Free Software Foundation; either version 2.1 of the License, or (at youroption) any later version.The GNU MP Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General PublicLicense for more details.You should have received a copy of the GNU Lesser General Public Licensealong with the GNU MP Library; see the file COPYING.LIB.  If not, write tothe Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,MA 02111-1307, USA. *//* q_high = mpn_bdivmod (qp, up, usize, vp, vsize, d).   Puts the low d/BITS_PER_MP_LIMB limbs of Q = U / V mod 2^d at qp, and   returns the high d%BITS_PER_MP_LIMB bits of Q as the result.   Also, U - Q * V mod 2^(usize*BITS_PER_MP_LIMB) is placed at up.  Since the   low d/BITS_PER_MP_LIMB limbs of this difference are zero, the code allows   the limb vectors at qp to overwrite the low limbs at up, provided qp <= up.   Preconditions:   1.  V is odd.   2.  usize * BITS_PER_MP_LIMB >= d.   3.  If Q and U overlap, qp <= up.   Ken Weber (kweber@mat.ufrgs.br, kweber@mcs.kent.edu)   Funding for this work has been partially provided by Conselho Nacional   de Desenvolvimento Cienti'fico e Tecnolo'gico (CNPq) do Brazil, Grant   301314194-2, and was done while I was a visiting reseacher in the Instituto   de Matema'tica at Universidade Federal do Rio Grande do Sul (UFRGS).   References:       T. Jebelean, An algorithm for exact division, Journal of Symbolic       Computation, v. 15, 1993, pp. 169-180.       K. Weber, The accelerated integer GCD algorithm, ACM Transactions on       Mathematical Software, v. 21 (March), 1995, pp. 111-122.  */#include "gmp.h"#include "gmp-impl.h"#include "longlong.h"mp_limb_tmpn_bdivmod (mp_ptr qp, mp_ptr up, mp_size_t usize,	     mp_srcptr vp, mp_size_t vsize, unsigned long int d){  mp_limb_t v_inv;  ASSERT (usize >= 1);  ASSERT (vsize >= 1);  ASSERT (usize * GMP_NUMB_BITS >= d);  ASSERT (! MPN_OVERLAP_P (up, usize, vp, vsize));  ASSERT (! MPN_OVERLAP_P (qp, d/GMP_NUMB_BITS, vp, vsize));  ASSERT (MPN_SAME_OR_INCR2_P (qp, d/GMP_NUMB_BITS, up, usize));  ASSERT_MPN (up, usize);  ASSERT_MPN (vp, vsize);  /* 1/V mod 2^GMP_NUMB_BITS. */  modlimb_invert (v_inv, vp[0]);  /* Fast code for two cases previously used by the accel part of mpn_gcd.     (Could probably remove this now it's inlined there.) */  if (usize == 2 && vsize == 2 &&      (d == GMP_NUMB_BITS || d == 2*GMP_NUMB_BITS))    {      mp_limb_t hi, lo;      mp_limb_t q = (up[0] * v_inv) & GMP_NUMB_MASK;      umul_ppmm (hi, lo, q, vp[0] << GMP_NAIL_BITS);      up[0] = 0;      up[1] -= hi + q*vp[1];      qp[0] = q;      if (d == 2*GMP_NUMB_BITS)        {          q = (up[1] * v_inv) & GMP_NUMB_MASK;          up[1] = 0;          qp[1] = q;        }      return 0;    }  /* Main loop.  */  while (d >= GMP_NUMB_BITS)    {      mp_limb_t q = (up[0] * v_inv) & GMP_NUMB_MASK;      mp_limb_t b = mpn_submul_1 (up, vp, MIN (usize, vsize), q);      if (usize > vsize)	mpn_sub_1 (up + vsize, up + vsize, usize - vsize, b);      d -= GMP_NUMB_BITS;      up += 1, usize -= 1;      *qp++ = q;    }  if (d)    {      mp_limb_t b;      mp_limb_t q = (up[0] * v_inv) & (((mp_limb_t)1<<d) - 1);      if (q <= 1)	{	  if (q == 0)	    return 0;	  else	    b = mpn_sub_n (up, up, vp, MIN (usize, vsize));	}      else	b = mpn_submul_1 (up, vp, MIN (usize, vsize), q);      if (usize > vsize)	mpn_sub_1 (up + vsize, up + vsize, usize - vsize, b);      return q;    }  return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -