📄 udiv_w_sdiv.c
字号:
/* mpn_udiv_w_sdiv -- implement udiv_qrnnd on machines with only signed division. Contributed by Peter L. Montgomery. THIS IS AN INTERNAL FUNCTION WITH A MUTABLE INTERFACE. IT IS ONLY SAFE TO REACH THIS FUNCTION THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST GUARANTEED THAT THIS FUNCTION WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.Copyright 1992, 1994, 1996, 2000 Free Software Foundation, Inc.This file is part of the GNU MP Library.The GNU MP Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Lesser General Public License as published bythe Free Software Foundation; either version 2.1 of the License, or (at youroption) any later version.The GNU MP Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General PublicLicense for more details.You should have received a copy of the GNU Lesser General Public Licensealong with the GNU MP Library; see the file COPYING.LIB. If not, write tothe Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,MA 02111-1307, USA. */#include "gmp.h"#include "gmp-impl.h"#include "longlong.h"mp_limb_tmpn_udiv_w_sdiv (rp, a1, a0, d) mp_limb_t *rp, a1, a0, d;{ mp_limb_t q, r; mp_limb_t c0, c1, b1; ASSERT (d != 0); ASSERT (a1 < d); if ((mp_limb_signed_t) d >= 0) { if (a1 < d - a1 - (a0 >> (BITS_PER_MP_LIMB - 1))) { /* dividend, divisor, and quotient are nonnegative */ sdiv_qrnnd (q, r, a1, a0, d); } else { /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */ sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (BITS_PER_MP_LIMB - 1)); /* Divide (c1*2^32 + c0) by d */ sdiv_qrnnd (q, r, c1, c0, d); /* Add 2^31 to quotient */ q += (mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1); } } else { b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ c1 = a1 >> 1; /* A/2 */ c0 = (a1 << (BITS_PER_MP_LIMB - 1)) + (a0 >> 1); if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ { sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ { c1 = (b1 - 1) - c1; c0 = ~c0; /* logical NOT */ sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ q = ~q; /* (A/2)/b1 */ r = (b1 - 1) - r; r = 2*r + (a0 & 1); /* A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else /* Implies c1 = b1 */ { /* Hence a1 = d - 1 = 2*b1 - 1 */ if (a0 >= -d) { q = -1; r = a0 + d; } else { q = -2; r = a0 + 2*d; } } } *rp = r; return q;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -