⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rootrem.c

📁 a very popular packet of cryptography tools,it encloses the most common used algorithm and protocols
💻 C
字号:
/* mpn_rootrem(rootp,remp,ap,an,nth) -- Compute the nth root of {ap,an}, and   store the truncated integer part at rootp and the remainder at remp.   THE FUNCTIONS IN THIS FILE ARE INTERNAL FUNCTIONS WITH MUTABLE   INTERFACES.  IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.   IN FACT, IT IS ALMOST GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A   FUTURE GNU MP RELEASE.Copyright 2002 Free Software Foundation, Inc.This file is part of the GNU MP Library.The GNU MP Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Lesser General Public License as published bythe Free Software Foundation; either version 2.1 of the License, or (at youroption) any later version.The GNU MP Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General PublicLicense for more details.You should have received a copy of the GNU Lesser General Public Licensealong with the GNU MP Library; see the file COPYING.LIB.  If not, write tothe Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,MA 02111-1307, USA. *//*  We use Newton's method to compute the root of a:           n  f(x) := x  - a            n - 1  f'(x) := x      n                                       n-1            n-1           n-1                                x - a/x            a/x   - x     a/x   + (n-1)x  new x = x - f(x)/f'(x) =  x - ----------  =  x + ---------  =  --------------                                     n                 n                n*/#include <stdio.h>#include <stdlib.h>#include "gmp.h"#include "gmp-impl.h"#include "longlong.h"mp_size_tmpn_rootrem (mp_ptr rootp, mp_ptr remp,	     mp_srcptr up, mp_size_t un, mp_limb_t nth){  mp_ptr pp, qp, xp;  mp_size_t pn, xn, qn;  unsigned long int unb, xnb, bit;  unsigned int cnt;  mp_size_t i;  unsigned long int n_valid_bits, adj;  TMP_DECL (marker);  TMP_MARK (marker);  /* The extra factor 1.585 = log(3)/log(2) here is for the worst case     overestimate of the root, i.e., when the code rounds a root that is     2+epsilon to 3, and the powers this to a potentially huge power.  We     could generalize the code for detecting root=1 a few lines below to deal     with xnb <= k, for some small k.  For example, when xnb <= 2, meaning     the root should be 1, 2, or 3, we could replace this factor by the much     smaller log(5)/log(4).  */#define PP_ALLOC (2 + (mp_size_t) (un*1.585))  pp = TMP_ALLOC_LIMBS (PP_ALLOC);  count_leading_zeros (cnt, up[un - 1]);  unb = un * GMP_NUMB_BITS - cnt + GMP_NAIL_BITS;  xnb = (unb - 1) / nth + 1;  if (xnb == 1)    {      if (remp == NULL)	remp = pp;      mpn_sub_1 (remp, up, un, (mp_limb_t) 1);      MPN_NORMALIZE (remp, un);      rootp[0] = 1;      TMP_FREE (marker);      return un;    }  xn = (xnb + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;  qp = TMP_ALLOC_LIMBS (un + 1);  xp = TMP_ALLOC_LIMBS (xn + 1);  /* Set initial root to only ones.  This is an overestimate of the actual root     by less than a factor of 2.  */  for (i = 0; i < xn; i++)    xp[i] = GMP_NUMB_MAX;  xp[xnb / GMP_NUMB_BITS] = ((mp_limb_t) 1 << (xnb % GMP_NUMB_BITS)) - 1;  /* Improve the initial approximation, one bit at a time.  Keep the     approximations >= root(U,nth).  */  bit = xnb - 2;  n_valid_bits = 0;  for (i = 0; (nth >> i) != 0; i++)    {      mp_limb_t xl = xp[bit / GMP_NUMB_BITS];      xp[bit / GMP_NUMB_BITS] = xl ^ (mp_limb_t) 1 << bit % GMP_NUMB_BITS;      pn = mpn_pow_1 (pp, xp, xn, nth, qp);      ASSERT_ALWAYS (pn < PP_ALLOC);      /* If the new root approximation is too small, restore old value.  */      if (! (un < pn || (un == pn && mpn_cmp (up, pp, pn) < 0)))	xp[bit / GMP_NUMB_BITS] = xl;		/* restore old value */      n_valid_bits += 1;      if (bit == 0)	goto done;      bit--;    }  adj = n_valid_bits - 1;  /* Newton loop.  Converges downwards towards root(U,nth).  Currently we use   full precision from iteration 1.  Clearly, we should use just n_valid_bits   of precision in each step, and thus save most of the computations.  */  while (n_valid_bits <= xnb)    {      mp_limb_t cy;      pn = mpn_pow_1 (pp, xp, xn, nth - 1, qp);      ASSERT_ALWAYS (pn < PP_ALLOC);      qp[xn - 1] = 0;		/* pad quotient to make it always xn limbs */      mpn_tdiv_qr (qp, pp, (mp_size_t) 0, up, un, pp, pn); /* junk remainder */      cy = mpn_addmul_1 (qp, xp, xn, nth - 1);      if (un - pn == xn)	{	  cy += qp[xn];	  if (cy == nth)	    {	      for (i = xn - 1; i >= 0; i--)		qp[i] = GMP_NUMB_MAX;	      cy = nth - 1;	    }	}      qp[xn] = cy;      qn = xn + (cy != 0);      mpn_divrem_1 (xp, (mp_size_t) 0, qp, qn, nth);      n_valid_bits = n_valid_bits * 2 - adj;    }  /* The computed result might be one unit too large.  Adjust as necessary.  */ done:  pn = mpn_pow_1 (pp, xp, xn, nth, qp);  ASSERT_ALWAYS (pn < PP_ALLOC);  if (un < pn || (un == pn && mpn_cmp (up, pp, pn) < 0))    {      mpn_decr_u (xp, 1);      pn = mpn_pow_1 (pp, xp, xn, nth, qp);      ASSERT_ALWAYS (pn < PP_ALLOC);      ASSERT_ALWAYS (! (un < pn || (un == pn && mpn_cmp (up, pp, pn) < 0)));    }  if (remp == NULL)    remp = pp;  mpn_sub (remp, up, un, pp, pn);  MPN_NORMALIZE (remp, un);  MPN_COPY (rootp, xp, xn);  TMP_FREE (marker);  return un;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -