⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tsqrt.c

📁 a very popular packet of cryptography tools,it encloses the most common used algorithm and protocols
💻 C
字号:
/* Test file for mpfr_sqrt.Copyright 1999, 2001, 2002 Free Software Foundation, Inc.This file is part of the MPFR Library.The MPFR Library is free software; you can redistribute it and/or modifyit under the terms of the GNU Lesser General Public License as published bythe Free Software Foundation; either version 2.1 of the License, or (at youroption) any later version.The MPFR Library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITYor FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General PublicLicense for more details.You should have received a copy of the GNU Lesser General Public Licensealong with the MPFR Library; see the file COPYING.LIB.  If not, write tothe Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,MA 02111-1307, USA. */#include <math.h>#include <stdio.h>#include <stdlib.h>#include <time.h>#include "gmp.h"#include "gmp-impl.h"#include "mpfr.h"#include "mpfr-impl.h"#include "mpfr-test.h"#define check(a,r) check3(a,r,-1.0)int maxulp=0;void check3 _PROTO((double, mp_rnd_t, double)); void check4 _PROTO((double, mp_rnd_t, char *)); void check24 _PROTO((float, mp_rnd_t, float)); void check_float _PROTO((void)); void special _PROTO((void));void check_inexact _PROTO((mp_prec_t));void check_nan _PROTO((void));voidcheck3 (double a, mp_rnd_t rnd_mode, double Q){  mpfr_t q; double Q2; int ck,u;  ck = (Q!=-1.0); /* if ck=1, then Q is certified correct */  mpfr_init2(q, 53);  mpfr_set_d(q, a, rnd_mode);#ifdef MPFR_HAVE_FESETROUND  mpfr_set_machine_rnd_mode(rnd_mode);#endif  mpfr_sqrt(q, q, rnd_mode);  if (ck==0) Q = sqrt(a);  else {    if (Q != sqrt(a) && (!isnan(Q) || !isnan(sqrt(a)))) {      fprintf(stderr, "you've found a bug in your machine's sqrt for x=%1.20e\n", a);      mpfr_clear(q);       exit(1);    }  }  Q2 = mpfr_get_d1 (q);  if (Q!=Q2 && (!isnan(Q) || !isnan(Q2))) {    u = ulp(Q2,Q);    if (ck) {      printf("mpfr_sqrt failed for a=%1.20e, rnd_mode=%s\n",	     a, mpfr_print_rnd_mode(rnd_mode));      printf("expected sqrt is %1.20e, got %1.20e (%d ulp)\n",Q,Q2,u);      mpfr_clear(q);       exit(1);    }    else if (u>maxulp || u<-maxulp) {      maxulp = (u>maxulp) ? u : -u;      printf("libm.a differs from mpfr_sqrt for a=%1.20e, rnd_mode=%s\n",	     a, mpfr_print_rnd_mode(rnd_mode));      printf("libm.a gives %1.20e, mpfr_sqrt gives %1.20e (%d ulp)\n",Q,Q2,u);    }  }  mpfr_clear(q);}voidcheck4 (double a, mp_rnd_t rnd_mode, char *Q){  mpfr_t q, res;  mpfr_init2(q, 53); mpfr_init2(res, 53);  mpfr_set_d(q, a, rnd_mode);  mpfr_sqrt(q, q, rnd_mode);  mpfr_set_str(res, Q, 16, GMP_RNDN);  if (mpfr_cmp(q, res)) {      printf("mpfr_sqrt failed for a=%1.20e, rnd_mode=%s\n",	     a, mpfr_print_rnd_mode(rnd_mode));      printf("expected "); mpfr_print_binary(res); putchar('\n');      printf("got      "); mpfr_print_binary(q); putchar('\n');      mpfr_clear(q); mpfr_clear(res);       exit(1);  }  mpfr_clear(res);   mpfr_clear(q);}voidcheck24 (float a, mp_rnd_t rnd_mode, float Q){  mpfr_t q; float Q2;  mpfr_init2(q, 24);  mpfr_set_d(q, a, rnd_mode);  mpfr_sqrt(q, q, rnd_mode);  Q2 = mpfr_get_d1 (q);  if (Q!=Q2) {    printf("mpfr_sqrt failed for a=%1.10e, prec=24, rnd_mode=%s\n",	   a, mpfr_print_rnd_mode(rnd_mode));    printf("expected sqrt is %1.10e, got %1.10e\n",Q,Q2);    exit(1);  }  mpfr_clear(q);}/* the following examples come from the paper "Number-theoretic Test    Generation for Directed Rounding" from Michael Parks, Table 3 */voidcheck_float (void){  float b = 8388608.0; /* 2^23 */  check24(b*8388610.0, GMP_RNDN, 8.388609e6);  check24(b*2.0*16777214.0, GMP_RNDN, 1.6777215e7);  check24(b*8388612.0, GMP_RNDN, 8.388610e6);  check24(b*2.0*16777212.0, GMP_RNDN, 1.6777214e7);  check24(b*11946704.0, GMP_RNDN, 1.0010805e7);  check24(b*14321479.0, GMP_RNDN, 1.0960715e7);  check24(b*2.0*13689673.0, GMP_RNDN, 1.5155019e7);  check24(b*8388614.0, GMP_RNDN, 8.388611e6);  check24(b*2.0*16777210.0, GMP_RNDN, 1.6777213e7);  check24(b*10873622.0, GMP_RNDN, 9.550631e6);  check24(b*8388610.0, GMP_RNDZ, 8.388608e6);  check24(b*2.0*16777214.0, GMP_RNDZ, 1.6777214e7);  check24(b*8388612.0, GMP_RNDZ, 8.388609e6);  check24(b*2.0*16777212.0, GMP_RNDZ, 1.6777213e7);  check24(b*11946704.0, GMP_RNDZ, 1.0010805e7);  check24(b*14321479.0, GMP_RNDZ, 1.0960715e7);  check24(b*2.0*13689673.0, GMP_RNDZ, 1.5155019e7);  check24(b*8388614.0, GMP_RNDZ, 8.38861e6);  check24(b*2.0*16777210.0, GMP_RNDZ, 1.6777212e7);  check24(b*10873622.0, GMP_RNDZ, 9.550631e6);  check24(b*8388610.0, GMP_RNDU, 8.388609e6);  check24(b*2.0*16777214.0, GMP_RNDU, 1.6777215e7);  check24(b*8388612.0, GMP_RNDU, 8.388610e6);  check24(b*2.0*16777212.0, GMP_RNDU, 1.6777214e7);  check24(b*11946704.0, GMP_RNDU, 1.0010806e7);  check24(b*14321479.0, GMP_RNDU, 1.0960716e7);  check24(b*2.0*13689673.0, GMP_RNDU, 1.515502e7);  check24(b*8388614.0, GMP_RNDU, 8.388611e6);  check24(b*2.0*16777210.0, GMP_RNDU, 1.6777213e7);  check24(b*10873622.0, GMP_RNDU, 9.550632e6);  check24(b*8388610.0, GMP_RNDD, 8.388608e6);  check24(b*2.0*16777214.0, GMP_RNDD, 1.6777214e7);  check24(b*8388612.0, GMP_RNDD, 8.388609e6);  check24(b*2.0*16777212.0, GMP_RNDD, 1.6777213e7);  check24(b*11946704.0, GMP_RNDD, 1.0010805e7);  check24(b*14321479.0, GMP_RNDD, 1.0960715e7);  check24(b*2.0*13689673.0, GMP_RNDD, 1.5155019e7);  check24(b*8388614.0, GMP_RNDD, 8.38861e6);  check24(b*2.0*16777210.0, GMP_RNDD, 1.6777212e7);  check24(b*10873622.0, GMP_RNDD, 9.550631e6);}voidspecial (void){  mpfr_t x, z;  int inexact;  mp_prec_t p;  mpfr_init (x);  mpfr_init (z);  mpfr_set_prec (x, 27);  mpfr_set_str_raw (x, "0.110100111010101000010001011");  if ((inexact = mpfr_sqrt (x, x, GMP_RNDZ)) >= 0)    {      fprintf (stderr, "Wrong inexact flag: expected -1, got %d\n", inexact);      exit (1);    }  mpfr_set_prec (x, 2);  for (p=2; p<1000; p++)    {      mpfr_set_prec (z, p);      mpfr_set_ui (z, 1, GMP_RNDN);      mpfr_add_one_ulp (z, GMP_RNDN);      mpfr_sqrt (x, z, GMP_RNDU);      if (mpfr_get_d1 (x) != 1.5)	{	  fprintf (stderr, "Error: sqrt(1+ulp(1), up) should give 1.5 (prec=%u)\n", (unsigned) p);	  printf ("got "); mpfr_print_binary (x); putchar ('\n');	  exit (1);	}    }  /* check inexact flag */  mpfr_set_prec (x, 5);  mpfr_set_str_raw (x, "1.1001E-2");  if ((inexact = mpfr_sqrt (x, x, GMP_RNDN)))    {      fprintf (stderr, "Wrong inexact flag: expected 0, got %d\n", inexact);      exit (1);    }  mpfr_set_prec (x, 2);  mpfr_set_prec (z, 2);  /* checks the sign is correctly set */  mpfr_set_d (x, 1.0, GMP_RNDN);  mpfr_set_d (z, -1.0, GMP_RNDN);  mpfr_sqrt (z, x, GMP_RNDN);  if (mpfr_cmp_ui (z, 0) < 0) {    fprintf (stderr, "Error: square root of %e gives %e\n", 	     mpfr_get_d1 (x), mpfr_get_d1 (z));    exit (1);  }  mpfr_set_prec (x, 192);  mpfr_set_prec (z, 160);  mpfr_set_str_raw (z, "0.1011010100000100100100100110011001011100100100000011000111011001011101101101110000110100001000100001100001011000E1");  mpfr_set_prec (x, 160);  mpfr_sqrt(x, z, GMP_RNDN);  mpfr_sqrt(z, x, GMP_RNDN);  mpfr_clear (x);  mpfr_clear (z);}voidcheck_inexact (mp_prec_t p){  mpfr_t x, y, z;  mp_rnd_t rnd;  int inexact, sign;  mpfr_init2 (x, p);  mpfr_init2 (y, p);  mpfr_init2 (z, 2*p);  mpfr_random (x);  rnd = LONG_RAND() % 4;  inexact = mpfr_sqrt (y, x, rnd);  if (mpfr_mul (z, y, y, rnd)) /* exact since prec(z) = 2*prec(y) */    {      fprintf (stderr, "Error: multiplication should be exact\n");      exit (1);    }  mpfr_sub (z, z, x, rnd); /* exact also */  sign = mpfr_cmp_ui (z, 0);  if (((inexact == 0) && (sign)) ||      ((inexact > 0) && (sign <= 0)) ||      ((inexact < 0) && (sign >= 0)))    {      fprintf (stderr, "Error: wrong inexact flag, expected %d, got %d\n",	       sign, inexact);      printf ("x=");      mpfr_print_binary (x);      printf (" rnd=%s\n", mpfr_print_rnd_mode (rnd));      printf ("y="); mpfr_print_binary (y); putchar ('\n');      exit (1);    }  mpfr_clear (x);  mpfr_clear (y);  mpfr_clear (z);}voidcheck_nan (void){  mpfr_t  x, got;  mpfr_init2 (x, 100L);  mpfr_init2 (got, 100L);  /* sqrt(NaN) == NaN */  MPFR_CLEAR_FLAGS (x);  MPFR_SET_NAN (x);  ASSERT_ALWAYS (mpfr_sqrt (got, x, GMP_RNDZ) == 0); /* exact */  ASSERT_ALWAYS (mpfr_nan_p (got));  /* sqrt(-1) == NaN */  mpfr_set_si (x, -1L, GMP_RNDZ);  ASSERT_ALWAYS (mpfr_sqrt (got, x, GMP_RNDZ) == 0); /* exact */  ASSERT_ALWAYS (mpfr_nan_p (got));  /* sqrt(+inf) == +inf */  MPFR_CLEAR_FLAGS (x);  MPFR_SET_INF (x);  MPFR_SET_POS (x);  ASSERT_ALWAYS (mpfr_sqrt (got, x, GMP_RNDZ) == 0); /* exact */  ASSERT_ALWAYS (mpfr_inf_p (got));  /* sqrt(-inf) == NaN */  MPFR_CLEAR_FLAGS (x);  MPFR_SET_INF (x);  MPFR_SET_NEG (x);  ASSERT_ALWAYS (mpfr_sqrt (got, x, GMP_RNDZ) == 0); /* exact */  ASSERT_ALWAYS (mpfr_nan_p (got));  /* sqrt(-0) == 0 */  mpfr_set_si (x, 0L, GMP_RNDZ);  MPFR_SET_NEG (x);  ASSERT_ALWAYS (mpfr_sqrt (got, x, GMP_RNDZ) == 0); /* exact */  ASSERT_ALWAYS (mpfr_number_p (got));  ASSERT_ALWAYS (mpfr_cmp_ui (got, 0L) == 0);  mpfr_clear (x);  mpfr_clear (got);}double five = 5.0;intmain (void){  double a;  mp_prec_t p;  int k;#ifdef MPFR_HAVE_FESETROUND  int i;  mpfr_test_init ();  /* On Debian potato glibc 2.1.3-18, sqrt() doesn't seem to respect     fesetround. */  {    double  a, b;    mpfr_set_machine_rnd_mode (GMP_RNDU);    a = sqrt (five);    mpfr_set_machine_rnd_mode (GMP_RNDD);    b = sqrt (five);    if (a == b)      {        printf ("Tests suppressed, mpfr_set_machine_rnd_mode doesn't affect sqrt()\n");        goto nogood;      }  }  SEED_RAND (time(NULL));  for (i=0;i<100000;i++)    {      a = drand();      if (a < 0.0) a = -a; /* ensures a is positive */      check (a, LONG_RAND() % 4);    } nogood:#endif  check_nan ();  for (p=2; p<200; p++)    for (k=0; k<200; k++)      check_inexact (p);  special ();  check_float();#ifdef HAVE_INFS  check3 (DBL_NAN, GMP_RNDN, DBL_NAN);   check3 (-1.0, GMP_RNDN, DBL_NAN);   check3 (DBL_POS_INF, GMP_RNDN, DBL_POS_INF);   check3 (DBL_NEG_INF, GMP_RNDN, DBL_NAN);#endif  check3(-0.0, GMP_RNDN, 0.0);   check4(6.37983013646045901440e+32, GMP_RNDN, "5.9bc5036d09e0c@13");  check4(1.0, GMP_RNDN, "1");  check4(1.0, GMP_RNDZ, "1");  check4(3.725290298461914062500000e-9, GMP_RNDN, "4@-4");  check4(3.725290298461914062500000e-9, GMP_RNDZ, "4@-4");  a=1190456976439861.0;  check4(a, GMP_RNDZ, "2.0e7957873529a@6");  check4(1024.0*a, GMP_RNDZ, "4.1cf2af0e6a534@7");  /* the following examples are bugs in Cygnus compiler/system, found by     Fabrice Rouillier while porting mpfr to Windows */  check4(9.89438396044940256501e-134, GMP_RNDU, "8.7af7bf0ebbee@-56");  check4(7.86528588050363751914e+31, GMP_RNDZ, "1.f81fc40f32062@13");  check4(0.99999999999999988897, GMP_RNDN, "f.ffffffffffff8@-1");  check4(1.00000000000000022204, GMP_RNDN, "1");  /* the following examples come from the paper "Number-theoretic Test    Generation for Directed Rounding" from Michael Parks, Table 4 */  a = 4503599627370496.0; /* 2^52 */  check4(a*2.0*8732221479794286.0, GMP_RNDN, "1.f81fc40f32063@13");  check4(a*8550954388695124.0, GMP_RNDN, "1.60c012a92fc65@13");  check4(a*7842344481681754.0, GMP_RNDN, "1.51d17526c7161@13");  check4(a*5935035262218600.0, GMP_RNDN, "1.25e19302f7e51@13");  check4(a*5039650445085418.0, GMP_RNDN, "1.0ecea7dd2ec3d@13");  check4(a*5039721545366078.0, GMP_RNDN, "1.0ecf250e8e921@13");  check4(a*8005963117781324.0, GMP_RNDN, "1.5552f3eedcf33@13");  check4(a*6703494707970582.0, GMP_RNDN, "1.3853ee10c9c99@13");  check4(a*8010323124937260.0, GMP_RNDN, "1.556abe212b56f@13");  check4(a*2.0*8010776873384260.0, GMP_RNDN, "1.e2d9a51977e6e@13");  check4(a*2.0*8732221479794286.0, GMP_RNDZ, "1.f81fc40f32062@13");  check4(a*8550954388695124.0, GMP_RNDZ, "1.60c012a92fc64@13");  check4(a*7842344481681754.0, GMP_RNDZ, "1.51d17526c716@13");  check4(a*5935035262218600.0, GMP_RNDZ, "1.25e19302f7e5@13");  check4(a*5039650445085418.0, GMP_RNDZ, "1.0ecea7dd2ec3c@13");  check4(a*5039721545366078.0, GMP_RNDZ, "1.0ecf250e8e92@13");  check4(a*8005963117781324.0, GMP_RNDZ, "1.5552f3eedcf32@13");  check4(a*6703494707970582.0, GMP_RNDZ, "1.3853ee10c9c98@13");  check4(a*8010323124937260.0, GMP_RNDZ, "1.556abe212b56e@13");  check4(a*2.0*8010776873384260.0, GMP_RNDZ, "1.e2d9a51977e6d@13");  check4(a*2.0*8732221479794286.0, GMP_RNDU, "1.f81fc40f32063@13");  check4(a*8550954388695124.0, GMP_RNDU, "1.60c012a92fc65@13");  check4(a*7842344481681754.0, GMP_RNDU, "1.51d17526c7161@13");  check4(a*5935035262218600.0, GMP_RNDU, "1.25e19302f7e51@13");  check4(a*5039650445085418.0, GMP_RNDU, "1.0ecea7dd2ec3d@13");  check4(a*5039721545366078.0, GMP_RNDU, "1.0ecf250e8e921@13");  check4(a*8005963117781324.0, GMP_RNDU, "1.5552f3eedcf33@13");  check4(a*6703494707970582.0, GMP_RNDU, "1.3853ee10c9c99@13");  check4(a*8010323124937260.0, GMP_RNDU, "1.556abe212b56f@13");  check4(a*2.0*8010776873384260.0, GMP_RNDU, "1.e2d9a51977e6e@13");  check4(a*2.0*8732221479794286.0, GMP_RNDD, "1.f81fc40f32062@13");  check4(a*8550954388695124.0, GMP_RNDD, "1.60c012a92fc64@13");  check4(a*7842344481681754.0, GMP_RNDD, "1.51d17526c716@13");  check4(a*5935035262218600.0, GMP_RNDD, "1.25e19302f7e5@13");  check4(a*5039650445085418.0, GMP_RNDD, "1.0ecea7dd2ec3c@13");  check4(a*5039721545366078.0, GMP_RNDD, "1.0ecf250e8e92@13");  check4(a*8005963117781324.0, GMP_RNDD, "1.5552f3eedcf32@13");  check4(a*6703494707970582.0, GMP_RNDD, "1.3853ee10c9c98@13");  check4(a*8010323124937260.0, GMP_RNDD, "1.556abe212b56e@13");  check4(a*2.0*8010776873384260.0, GMP_RNDD, "1.e2d9a51977e6d@13");  return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -