⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 calc.y

📁 a very popular packet of cryptography tools,it encloses the most common used algorithm and protocols
💻 Y
字号:
%{/* A simple integer desk calculator using yacc and gmp.Copyright 2000, 2001, 2002 Free Software Foundation, Inc.This file is part of the GNU MP Library.This program is free software; you can redistribute it and/or modify it underthe terms of the GNU General Public License as published by the Free SoftwareFoundation; either version 2 of the License, or (at your option) any laterversion.This program is distributed in the hope that it will be useful, but WITHOUT ANYWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR APARTICULAR PURPOSE.  See the GNU General Public License for more details.You should have received a copy of the GNU General Public License along withthis program; if not, write to the Free Software Foundation, Inc., 59 TemplePlace - Suite 330, Boston, MA 02111-1307, USA. *//* This is a simple program, meant only to show one way to use GMP for this   sort of thing.  There's few features, and error checking is minimal.   Standard input is read, calc_help() below shows the inputs accepted.   Expressions are evaluated as they're read.  If user defined functions   were wanted it'd be necessary to build a parse tree like pexpr.c does, or   a list of operations for a stack based evaluator.  That would also make   it possible to detect and optimize evaluations "mod m" like pexpr.c does.   A stack is used for intermediate values in the expression evaluation,   separate from the yacc parser stack.  This is simple, makes error   recovery easy, minimizes the junk around mpz calls in the rules, and   saves initializing or clearing "mpz_t"s during a calculation.  A   disadvantage though is that variables must be copied to the stack to be   worked on.  A more sophisticated calculator or language system might be   able to avoid that when executing a compiled or semi-compiled form.   Avoiding repeated initializing and clearing of "mpz_t"s is important.  In   this program the time spent parsing is obviously much greater than any   possible saving from this, but a proper calculator or language should   take some trouble over it.  Don't be surprised if an init/clear takes 3   or more times as long as a 10 limb addition, depending on the system (see   the mpz_init_realloc_clear example in tune/README).  */#include <stdio.h>#include <stdlib.h>#include <string.h>#include "gmp.h"#define NO_CALC_H /* because it conflicts with normal calc.c stuff */#include "calc-common.h"#define numberof(x)  (sizeof (x) / sizeof ((x)[0]))voidcalc_help (void){  printf ("Examples:\n");  printf ("    2+3*4        expressions are evaluated\n");  printf ("    x=5^6        variables a to z can be set and used\n");  printf ("Operators:\n");  printf ("    + - *        arithmetic\n");  printf ("    / %%          division and remainder (rounding towards negative infinity)\n");  printf ("    ^            exponentiation\n");  printf ("    !            factorial\n");  printf ("    << >>        left and right shifts\n");  printf ("    <= >= >      \\ comparisons, giving 1 if true, 0 if false\n");  printf ("    == != <      /\n");  printf ("    && ||        logical and/or, giving 1 if true, 0 if false\n");  printf ("Functions:\n");  printf ("    abs(n)       absolute value\n");  printf ("    bin(n,m)     binomial coefficient\n");  printf ("    fib(n)       fibonacci number\n");  printf ("    gcd(a,b,..)  greatest common divisor\n");  printf ("    kron(a,b)    kronecker symbol\n");  printf ("    lcm(a,b,..)  least common multiple\n");  printf ("    lucnum(n)    lucas number\n");  printf ("    nextprime(n) next prime after n\n");  printf ("    powm(b,e,m)  modulo powering, b^e%%m\n");  printf ("    root(n,r)    r-th root\n");  printf ("    sqrt(n)      square root\n");  printf ("Other:\n");  printf ("    hex          \\ set hex or decimal for input and output\n");  printf ("    decimal      /   (\"0x\" can be used for hex too)\n");  printf ("    quit         exit program (EOF works too)\n");  printf ("    ;            statements are separated with a ; or newline\n");  printf ("    \\            continue expressions with \\ before newline\n");  printf ("    # xxx        comments are # though to newline\n");  printf ("Hex numbers must be entered in upper case, to distinguish them from the\n");  printf ("variables a to f (like in bc).\n");}int  ibase = 0;int  obase = 10;/* The stack is a fixed size, which means there's a limit on the nesting   allowed in expressions.  A more sophisticated program could let it grow   dynamically.  */mpz_t    stack[100];mpz_ptr  sp = stack[0];#define CHECK_OVERFLOW()                                                  \  if (sp >= stack[numberof(stack)])                                       \    {                                                                     \      fprintf (stderr,                                                    \               "Value stack overflow, too much nesting in expression\n"); \      YYERROR;                                                            \    }#define CHECK_EMPTY()                                                   \  if (sp != stack[0])                                                   \    {                                                                   \      fprintf (stderr, "Oops, expected the value stack to be empty\n"); \      sp = stack[0];                                                    \    }mpz_t  variable[26];#define CHECK_VARIABLE(var)                                             \  if ((var) < 0 || (var) >= numberof (variable))                        \    {                                                                   \      fprintf (stderr, "Oops, bad variable somehow: %d\n", var);        \      YYERROR;                                                          \    }#define CHECK_UI(name,z)                        \  if (! mpz_fits_ulong_p (z))                   \    {                                           \      fprintf (stderr, "%s too big\n", name);   \      YYERROR;                                  \    }%}%union {  char  *str;  int   var;}%token EOS BAD%token HELP HEX DECIMAL QUIT%token ABS BIN FIB GCD KRON LCM LUCNUM NEXTPRIME POWM ROOT SQRT%token <str> NUMBER%token <var> VARIABLE/* operators, increasing precedence */%left     LOR%left     LAND%nonassoc '<' '>' EQ NE LE GE%left     LSHIFT RSHIFT%left     '+' '-'%left     '*' '/' '%'%nonassoc UMINUS%right    '^'%nonassoc '!'%%top:  statement  | statements statement;statements:  statement EOS  | statements statement EOS  | error EOS { sp = stack[0]; yyerrok; };statement:  /* empty */  | e {      mpz_out_str (stdout, obase, sp); putchar ('\n');      sp--;      CHECK_EMPTY ();    }  | VARIABLE '=' e {      CHECK_VARIABLE ($1);      mpz_swap (variable[$1], sp);      sp--;      CHECK_EMPTY ();    }  | HELP    { calc_help (); }  | HEX     { ibase = 16; obase = -16; }  | DECIMAL { ibase = 0;  obase = 10; }  | QUIT    { exit (0); };/* "e" leaves it's value on the top of the mpz stack.  A rule like "e '+' e"   will have done a reduction for the first "e" first and the second "e"   second, so the code receives the values in that order on the stack.  */e:    '(' e ')'     /* value on stack */    | e '+' e     { sp--; mpz_add    (sp, sp, sp+1); }    | e '-' e     { sp--; mpz_sub    (sp, sp, sp+1); }    | e '*' e     { sp--; mpz_mul    (sp, sp, sp+1); }    | e '/' e     { sp--; mpz_fdiv_q (sp, sp, sp+1); }    | e '%' e     { sp--; mpz_fdiv_r (sp, sp, sp+1); }    | e '^' e     { CHECK_UI ("Exponent", sp);                    sp--; mpz_pow_ui (sp, sp, mpz_get_ui (sp+1)); }    | e LSHIFT e  { CHECK_UI ("Shift count", sp);                    sp--; mpz_mul_2exp (sp, sp, mpz_get_ui (sp+1)); }    | e RSHIFT e  { CHECK_UI ("Shift count", sp);                    sp--; mpz_fdiv_q_2exp (sp, sp, mpz_get_ui (sp+1)); }    | e '!'       { CHECK_UI ("Factorial", sp);                    mpz_fac_ui (sp, mpz_get_ui (sp)); }    | '-' e %prec UMINUS   { mpz_neg (sp, sp); }    | e '<' e     { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) <  0); }    | e LE  e     { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) <= 0); }    | e EQ  e     { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) == 0); }    | e NE  e     { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) != 0); }    | e GE  e     { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) >= 0); }    | e '>' e     { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) >  0); }    | e LAND e    { sp--; mpz_set_ui (sp, mpz_sgn (sp) && mpz_sgn (sp+1)); }    | e LOR e     { sp--; mpz_set_ui (sp, mpz_sgn (sp) || mpz_sgn (sp+1)); }    | ABS '(' e ')'              { mpz_abs (sp, sp); }    | BIN '(' e ',' e ')'        { sp--; CHECK_UI ("Binomial base", sp+1);                                   mpz_bin_ui (sp, sp, mpz_get_ui (sp+1)); }    | FIB '(' e ')'              { CHECK_UI ("Fibonacci", sp);                                   mpz_fib_ui (sp, mpz_get_ui (sp)); }    | GCD '(' gcdlist ')'        /* value on stack */    | KRON '(' e ',' e ')'       { sp--; mpz_set_si (sp,                                         mpz_kronecker (sp, sp+1)); }    | LCM '(' lcmlist ')'        /* value on stack */    | LUCNUM '(' e ')'           { CHECK_UI ("Lucas number", sp);                                   mpz_lucnum_ui (sp, mpz_get_ui (sp)); }    | NEXTPRIME '(' e ')'        { mpz_nextprime (sp, sp); }    | POWM '(' e ',' e ',' e ')' { sp -= 2; mpz_powm (sp, sp, sp+1, sp+2); }    | ROOT '(' e ',' e ')'       { sp--; CHECK_UI ("Nth-root", sp+1);                                   mpz_root (sp, sp, mpz_get_ui (sp+1)); }    | SQRT '(' e ')'             { mpz_sqrt (sp, sp); }    | VARIABLE {        sp++;        CHECK_OVERFLOW ();        CHECK_VARIABLE ($1);        mpz_set (sp, variable[$1]);      }    | NUMBER {        sp++;        CHECK_OVERFLOW ();        if (mpz_set_str (sp, $1, ibase) != 0)          {            fprintf (stderr, "Invalid number: %s\n", $1);            YYERROR;          }      };gcdlist:    e                /* value on stack */    | gcdlist ',' e  { sp--; mpz_gcd (sp, sp, sp+1); };lcmlist:    e                /* value on stack */    | lcmlist ',' e  { sp--; mpz_lcm (sp, sp, sp+1); };%%yyerror (char *s){  fprintf (stderr, "%s\n", s);}int calc_option_readline = -1;intmain (int argc, char *argv[]){  int  i;  for (i = 1; i < argc; i++)    {      if (strcmp (argv[i], "--readline") == 0)        calc_option_readline = 1;      else if (strcmp (argv[i], "--noreadline") == 0)        calc_option_readline = 0;      else if (strcmp (argv[i], "--help") == 0)        {          printf ("Usage: calc [--option]...\n");          printf ("  --readline    use readline\n");          printf ("  --noreadline  don't use readline\n");          printf ("  --help        this message\n");          printf ("Readline is only available when compiled in,\n");          printf ("and in that case it's the default on a tty.\n");          exit (0);        }      else        {          fprintf (stderr, "Unrecognised option: %s\n", argv[i]);          exit (1);        }    }#if WITH_READLINE  calc_init_readline ();#else  if (calc_option_readline == 1)    {      fprintf (stderr, "Readline support not available\n");      exit (1);    }#endif  for (i = 0; i < numberof (variable); i++)    mpz_init (variable[i]);  for (i = 0; i < numberof (stack); i++)    mpz_init (stack[i]);  return yyparse ();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -