📄 _deque.h
字号:
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Copyright (c) 1997
* Moscow Center for SPARC Technology
*
* Copyright (c) 1999
* Boris Fomitchev
*
* This material is provided "as is", with absolutely no warranty expressed
* or implied. Any use is at your own risk.
*
* Permission to use or copy this software for any purpose is hereby granted
* without fee, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef _STLP_INTERNAL_DEQUE_H
#define _STLP_INTERNAL_DEQUE_H
# ifndef _STLP_INTERNAL_ALGOBASE_H
# include <stl/_algobase.h>
# endif
# ifndef _STLP_INTERNAL_ALLOC_H
# include <stl/_alloc.h>
# endif
# ifndef _STLP_INTERNAL_ITERATOR_H
# include <stl/_iterator.h>
# endif
# ifndef _STLP_INTERNAL_UNINITIALIZED_H
# include <stl/_uninitialized.h>
# endif
# ifndef _STLP_RANGE_ERRORS_H
# include <stl/_range_errors.h>
# endif
/* Class invariants:
* For any nonsingular iterator i:
* i.node is the address of an element in the map array. The
* contents of i.node is a pointer to the beginning of a node.
* i.first == *(i.node)
* i.last == i.first + node_size
* i.cur is a pointer in the range [i.first, i.last). NOTE:
* the implication of this is that i.cur is always a dereferenceable
* pointer, even if i is a past-the-end iterator.
* Start and Finish are always nonsingular iterators. NOTE: this means
* that an empty deque must have one node, and that a deque
* with N elements, where N is the buffer size, must have two nodes.
* For every node other than start.node and finish.node, every element
* in the node is an initialized object. If start.node == finish.node,
* then [start.cur, finish.cur) are initialized objects, and
* the elements outside that range are uninitialized storage. Otherwise,
* [start.cur, start.last) and [finish.first, finish.cur) are initialized
* objects, and [start.first, start.cur) and [finish.cur, finish.last)
* are uninitialized storage.
* [map, map + map_size) is a valid, non-empty range.
* [start.node, finish.node] is a valid range contained within
* [map, map + map_size).
* A pointer in the range [map, map + map_size) points to an allocated node
* if and only if the pointer is in the range [start.node, finish.node].
*/
# undef deque
# define deque __WORKAROUND_DBG_RENAME(deque)
_STLP_BEGIN_NAMESPACE
template <class _Tp>
struct _Deque_iterator_base {
enum _Constants {
_blocksize = _MAX_BYTES,
__buffer_size = (sizeof(_Tp) < (size_t)_blocksize ?
( (size_t)_blocksize / sizeof(_Tp)) : size_t(1))
};
typedef random_access_iterator_tag iterator_category;
typedef _Tp value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type** _Map_pointer;
typedef _Deque_iterator_base< _Tp > _Self;
value_type* _M_cur;
value_type* _M_first;
value_type* _M_last;
_Map_pointer _M_node;
_Deque_iterator_base(value_type* __x, _Map_pointer __y)
: _M_cur(__x), _M_first(*__y),
_M_last(*__y + __buffer_size), _M_node(__y) {}
_Deque_iterator_base() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
difference_type _M_subtract(const _Self& __x) const {
return difference_type(__buffer_size) * (_M_node - __x._M_node - 1) +
(_M_cur - _M_first) + (__x._M_last - __x._M_cur);
}
void _M_increment() {
if (++_M_cur == _M_last) {
_M_set_node(_M_node + 1);
_M_cur = _M_first;
}
}
void _M_decrement() {
if (_M_cur == _M_first) {
_M_set_node(_M_node - 1);
_M_cur = _M_last;
}
--_M_cur;
}
void _M_advance(difference_type __n)
{
difference_type __offset = __n + (_M_cur - _M_first);
if (__offset >= 0 && __offset < difference_type(__buffer_size))
_M_cur += __n;
else {
difference_type __node_offset =
__offset > 0 ? __offset / __buffer_size
: -difference_type((-__offset - 1) / __buffer_size) - 1;
_M_set_node(_M_node + __node_offset);
_M_cur = _M_first +
(__offset - __node_offset * difference_type(__buffer_size));
}
}
void _M_set_node(_Map_pointer __new_node) {
_M_last = (_M_first = *(_M_node = __new_node)) + difference_type(__buffer_size);
}
};
template <class _Tp, class _Traits>
struct _Deque_iterator : public _Deque_iterator_base< _Tp> {
typedef random_access_iterator_tag iterator_category;
typedef _Tp value_type;
typedef typename _Traits::reference reference;
typedef typename _Traits::pointer pointer;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type** _Map_pointer;
typedef _Deque_iterator_base< _Tp > _Base;
typedef _Deque_iterator<_Tp, _Traits> _Self;
typedef _Deque_iterator<_Tp, _Nonconst_traits<_Tp> > _Nonconst_self;
typedef _Deque_iterator<_Tp, _Const_traits<_Tp> > _Const_self;
_Deque_iterator(value_type* __x, _Map_pointer __y) :
_Deque_iterator_base<value_type>(__x,__y) {}
_Deque_iterator() {}
_Deque_iterator(const _Nonconst_self& __x) :
_Deque_iterator_base<value_type>(__x) {}
reference operator*() const {
return *this->_M_cur;
}
_STLP_DEFINE_ARROW_OPERATOR
difference_type operator-(const _Self& __x) const { return this->_M_subtract(__x); }
_Self& operator++() { this->_M_increment(); return *this; }
_Self operator++(int) {
_Self __tmp = *this;
++*this;
return __tmp;
}
_Self& operator--() { this->_M_decrement(); return *this; }
_Self operator--(int) {
_Self __tmp = *this;
--*this;
return __tmp;
}
_Self& operator+=(difference_type __n) { this->_M_advance(__n); return *this; }
_Self operator+(difference_type __n) const
{
_Self __tmp = *this;
return __tmp += __n;
}
_Self& operator-=(difference_type __n) { return *this += -__n; }
_Self operator-(difference_type __n) const {
_Self __tmp = *this;
return __tmp -= __n;
}
reference operator[](difference_type __n) const { return *(*this + __n); }
};
template <class _Tp, class _Traits>
inline _Deque_iterator<_Tp, _Traits> _STLP_CALL
operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Traits>& __x)
{
return __x + __n;
}
#ifdef _STLP_USE_SEPARATE_RELOPS_NAMESPACE
template <class _Tp>
inline bool _STLP_CALL
operator==(const _Deque_iterator_base<_Tp >& __x,
const _Deque_iterator_base<_Tp >& __y) {
return __x._M_cur == __y._M_cur;
}
template <class _Tp>
inline bool _STLP_CALL
operator < (const _Deque_iterator_base<_Tp >& __x,
const _Deque_iterator_base<_Tp >& __y) {
return (__x._M_node == __y._M_node) ?
(__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
}
template <class _Tp>
inline bool _STLP_CALL
operator!=(const _Deque_iterator_base<_Tp >& __x,
const _Deque_iterator_base<_Tp >& __y) {
return __x._M_cur != __y._M_cur;
}
template <class _Tp>
inline bool _STLP_CALL
operator>(const _Deque_iterator_base<_Tp >& __x,
const _Deque_iterator_base<_Tp >& __y) {
return __y < __x;
}
template <class _Tp>
inline bool _STLP_CALL operator>=(const _Deque_iterator_base<_Tp >& __x,
const _Deque_iterator_base<_Tp >& __y) {
return !(__x < __y);
}
template <class _Tp>
inline bool _STLP_CALL operator<=(const _Deque_iterator_base<_Tp >& __x,
const _Deque_iterator_base<_Tp >& __y) {
return !(__y < __x);
}
# else
template <class _Tp, class _Traits1, class _Traits2>
inline bool _STLP_CALL
operator==(const _Deque_iterator<_Tp, _Traits1 >& __x,
const _Deque_iterator<_Tp, _Traits2 >& __y) {
return __x._M_cur == __y._M_cur;
}
template <class _Tp, class _Traits1, class _Traits2>
inline bool _STLP_CALL
operator < (const _Deque_iterator<_Tp, _Traits1 >& __x,
const _Deque_iterator<_Tp, _Traits2 >& __y) {
return (__x._M_node == __y._M_node) ?
(__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
}
template <class _Tp>
inline bool _STLP_CALL
operator!=(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp> >& __x,
const _Deque_iterator<_Tp, _Const_traits<_Tp> >& __y) {
return __x._M_cur != __y._M_cur;
}
template <class _Tp>
inline bool _STLP_CALL
operator>(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp> >& __x,
const _Deque_iterator<_Tp, _Const_traits<_Tp> >& __y) {
return __y < __x;
}
template <class _Tp>
inline bool _STLP_CALL
operator>=(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp> >& __x,
const _Deque_iterator<_Tp, _Const_traits<_Tp> >& __y) {
return !(__x < __y);
}
template <class _Tp>
inline bool _STLP_CALL
operator<=(const _Deque_iterator<_Tp, _Nonconst_traits<_Tp> >& __x,
const _Deque_iterator<_Tp, _Const_traits<_Tp> >& __y) {
return !(__y < __x);
}
# endif
# ifdef _STLP_USE_OLD_HP_ITERATOR_QUERIES
template <class _Tp, class _Traits> inline _Tp* _STLP_CALL value_type(const _Deque_iterator<_Tp, _Traits >&) { return (_Tp*)0; }
template <class _Tp, class _Traits> inline random_access_iterator_tag _STLP_CALL
iterator_category(const _Deque_iterator<_Tp, _Traits >&) { return random_access_iterator_tag(); }
template <class _Tp, class _Traits> inline ptrdiff_t* _STLP_CALL
distance_type(const _Deque_iterator<_Tp, _Traits >&) { return 0; }
#endif
// Deque base class. It has two purposes. First, its constructor
// and destructor allocate (but don't initialize) storage. This makes
// exception safety easier. Second, the base class encapsulates all of
// the differences between SGI-style allocators and standard-conforming
// allocators.
template <class _Tp, class _Alloc>
class _Deque_base {
public:
typedef _Tp value_type;
_STLP_FORCE_ALLOCATORS(_Tp, _Alloc)
typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type _Map_alloc_type;
typedef _Deque_iterator<_Tp, _Nonconst_traits<_Tp> > iterator;
typedef _Deque_iterator<_Tp, _Const_traits<_Tp> > const_iterator;
static size_t _STLP_CALL buffer_size() { return (size_t)_Deque_iterator_base<_Tp>::__buffer_size; }
_Deque_base(const allocator_type& __a, size_t __num_elements)
: _M_start(), _M_finish(), _M_map(_STLP_CONVERT_ALLOCATOR(__a, _Tp*), 0),
_M_map_size(__a, (size_t)0) {
_M_initialize_map(__num_elements);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -