📄 garcheviewssimulate.m
字号:
function [simulatedata, H] = garchsimulate(t,parameters,p,q)
% PURPOSE:
% GARCH(P,Q) time series simulation
%
% USAGE:
% [simulatedata, H] = garchsimulate(t,parameters,p,q)
%
% INPUTS:
% t: Length of the time series desired
% parameters: a 1+p+q x 1 vector of inputs where p are ARCH coefs and Q are GARCH coefs
% P: Positive, scalar integer representing a model order of the ARCH process
% Q: Non-Negative scalar integer representing a model order of the GARCH
% process: Q is the number of lags of the lagged conditional variances included
% Can be empty([]) for ARCH process
%
% OUTPUTS:
% simulatedata: A time series with GARCH variances and normal disturbances
% H: A vector of conditional variances used in making the time series
%
% COMMENTS:
% The time-conditional variance, H(t), of a GARCH(P,Q) process is modeled
% as follows:
%
% H(t) = Omega + Alpha(1)*r_{t-1}^2 + Alpha(2)*r_{t-2}^2 +...+ Alpha(P)*r_{t-p}^2+...
% Beta(1)*H(t-1)+ Beta(2)*H(t-2)+...+ Beta(Q)*H(t-q)
%
% NOTE: This program generates 500 more than required to minimize any starting bias
%
% Author: Kevin Sheppard
% kevin.sheppard@economics.ox.ac.uk
% Revision: 2 Date: 12/31/2001
constp=parameters(1);
archp=parameters(2:p+1);
garchp=parameters(p+2:p+q+1);
[r,c]=size(parameters);
if r<c
parameters=parameters';
end
if isempty(q)
m=p;
else
m = max(p,q);
end
t=t+500;
UncondStd = sqrt(constp/(1-sum(archp)-sum(garchp)));
h=UncondStd.^2*ones(t+m,1);
data=UncondStd*ones(t+m,1);
RandomNums=randn(t+m,1);
T=size(data,1);
for t = (m + 1):T
h(t) = parameters' * [1 ; data(t-(1:p)).^2; h(t-(1:q)) ];
data(t)=RandomNums(t)*sqrt(h(t));
end
simulatedata=data((m+1+500):T);
H=h(m+1+500:T);
if any(H<=0)
error('H''s negative, invalid parameters')
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -