📄 tarch.m
字号:
function [parameters, likelihood, ht, stderrors, robustSE, scores] = tarch(data , p , o, q , type, startingvals, options)
% PURPOSE:
% TARCH(P,O,Q) parameter estimation with normal innovations using analytic derivatives
%
% USAGE:
% [parameters, likelihood, ht, stderrors, robustSE, scores] = tarch(data , p , o, q , type, startingvals, options)
%
% INPUTS:
% data: A single column of zero mean random data, normal or not for quasi likelihood
%
% P: Positive, scalar integer representing a model order of the ARCH
% process
%
% O: Order of tarch terms to include
%
% Q: Non-negative, scalar integer representing a model order of the GARCH
% process: Q is the number of lags of the lagged conditional variances included
% Can be empty([]) for ARCH process
%
% type:(optional) Either 'TARCH' or 'GJR' Tarch works on std devs and GJR on variances. Default is TARCH
%
% startingvals: A (1+p+q) vector of starting vals. If you do not provide, a naieve guess is
% used for the arch and garch parameters, and omega is set to make the real unconditional variance equal
% to the garch expectation of the expectation.
%
% options: default options are below. You can provide an options vector. See HELP OPTIMSET
%
% OUTPUTS:
% parameters : a [1+p+o+q X 1] column of parameters with omega, alpha1, alpha2, ..., alpha(p)
% tarchp(1), ... , tarchp(o), beta1, beta2, ... beta(q)
%
% likelihood = the loglikelihood evaluated at he parameters
%
% ht = the estimated time varying VARIANCES
%
% stderrors = the inverse analytical hessian, not for quasi maximum liklihood
%
% robustSE = robust standard errors of form A^-1*B*A^-1*T^-1
% where A is the analytic hessian
% and B is the covariance of the scores
%
% scores = the list of T scores for use in M testing
%
% COMMENTS:
%
% GARCH(P,Q) the following(wrong) constratins are used(they are right for the (1,1) case or any Arch case
% (1) Omega > 0
% (2) Alpha(i) >= 0 for i = 1,2,...P
% (3) Beta(i) >= 0 for i = 1,2,...Q
% (4) sum(Alpha(i) + Beta(j)) < 1 for i = 1,2,...P and j = 1,2,...Q
%
% The time-conditional variance, H(t), of a GARCH(P,Q) process is modeled
% as follows:
%
% H(t) = Omega + Alpha(1)*r_{t-1}^2 + Alpha(2)*r_{t-2}^2 +...+ Alpha(P)*r_{t-p}^2+...
% Beta(1)*H(t-1)+ Beta(2)*H(t-2)+...+ Beta(Q)*H(t-q)
%
% Default Options
%
% options = optimset('fmincon');
% options = optimset(options , 'TolFun' , 1e-003);
% options = optimset(options , 'Display' , 'iter');
% options = optimset(options , 'Diagnostics' , 'on');
% options = optimset(options , 'LargeScale' , 'off');
% options = optimset(options , 'MaxFunEvals' , '400*numberOfVariables');
% options = optimset(options , 'GradObj' , 'on');
%
%
% uses TARCH_LIKELIHOOD and TARCHCORE or GJRCORE. You should MEX, mex 'path\garchcore.c', the MEX source
% The included MEX is for R12, 12.1 and 11 Windows and was compiled with Intel Compiler 5.01.
% It gives a 10-15 times speed increase
%
% Author: Kevin Sheppard
% kevin.sheppard@economics.ox.ac.uk
% Revision: 2 Date: 12/31/2001
if size(data,2) > 1
error('Data series must be a column vector.')
elseif isempty(data)
error('Data Series is Empty.')
end
if (length(q) > 1) | any(q < 0)
error('Q must ba a single positive scalar or an empty vector for ARCH.')
end
if (length(o) > 1) | any(o < 0)
error('O must be a single positive number.')
end
if (length(p) > 1) | any(p < 0)
error('P must be a single positive number.')
elseif isempty(p)
error('P is empty.')
end
if isempty(q)
q=0;
m=p;
else
m = max(p,q);
end
if nargin<=4 | isempty(type) | strcmp(type,'TARCH')
type=1;
elseif strcmp(type,'GJR')
type=2;
else
error('Can onyl do TARCH and GJR')
end
if nargin<=6 | isempty(startingvals)
alpha = .1*ones(p,1)/p;
if o>0
tarch = .1*ones(o,1)/o;
else
tarch = [];
end
beta = .80*ones(q,1)/q;
omega = 0.1*cov(data); %set the uncond = to its expection
else
omega=startingvals(1);
alpha=startingvals(2:p+1);
tarchstartingvals(p+2:p+o+1);
beta=startingvals(p+o+2:p+q+o+1);
end
LB = [];
UB = [];
sumA = [-eye(1+p+q+o); ...
0 ones(1,p) 0.5*ones(1,o) ones(1,q)];
sumB = [zeros(1+p+q+o,1);...
1];
if (nargin <= 6) | isempty(options)
options = optimset('fmincon');
options = optimset(options , 'TolFun' , 1e-003);
options = optimset(options , 'Display' , 'iter');
options = optimset(options , 'Diagnostics' , 'on');
options = optimset(options , 'LargeScale' , 'off');
options = optimset(options , 'MaxFunEvals' , 400*(1+p+q));
options = optimset(options , 'GradObj' , 'off');
end
sumB = sumB - [zeros(1+p+q+o,1); 1]*2*optimget(options, 'TolCon', 1e-6);
stdEstimate = std(data,1);
t=length(data);
data = [stdEstimate(ones(m,1)) ; data];
% Estimate the parameters.
[parameters, LLF, EXITFLAG, OUTPUT, LAMBDA, GRAD] = fmincon('tarchlikelihood', [omega ; alpha; tarch ; beta] ,sumA , sumB ,[] , [] , LB , UB,[],options,data, p ,o, q, m, stdEstimate, type);
if EXITFLAG<=0
EXITFLAG
fprintf(1,'Not Sucessful! \n')
end
parameters(find(parameters<0)) = 0;
parameters(find(parameters(1) <= 0)) = realmin;
[likelihood, ht]=tarchlikelihood(parameters,data, p ,o, q, m, stdEstimate, type);
likelihood=-likelihood;
%Calculate std errors if needed
if nargout >= 3
hess = hessian_2sided('tarchlikelihood',parameters,data, p ,o, q, m, stdEstimate, type);
stderrors=hess^(-1);
h=min(abs(parameters/2+1e4),max(parameters,1e-2))*eps^(1/3);
hplus=parameters+h;
hminus=parameters-h;
likelihoodsplus=zeros(t,length(parameters));
likelihoodsminus=zeros(t,length(parameters));
for i=1:length(parameters)
hparameters=parameters;
hparameters(i)=hplus(i);
[HOLDER, HOLDER1, indivlike] = tarchlikelihood(hparameters,data, p ,o, q, m, stdEstimate, type);
likelihoodsplus(:,i)=indivlike;
end
for i=1:length(parameters)
hparameters=parameters;
hparameters(i)=hminus(i);
[HOLDER, HOLDER1, indivlike] = tarchlikelihood(hparameters,data, p ,o, q, m, stdEstimate, type);
likelihoodsminus(:,i)=indivlike;
end
scores=(likelihoodsplus-likelihoodsminus)./(2*repmat(h',t,1));
scores=scores-repmat(mean(scores),t,1);
B=scores'*scores;
robustSE=stderrors*B*stderrors;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -