📄 diagonal_bekk_t_mvgarch.m
字号:
function [parameters, loglikelihood, Ht, likelihoods, stdresid, stderrors, A, B, scores] = diagonal_bekk_T_mvgarch(data,p,q,BEKKoptions);
% PURPOSE:
% To Estimate a diagonal BEKK multivariate GARCH model with T-dist errors. ****SEE WARNING AT END OF HELP FILE****
%
% USAGE:
% [parameters, loglikelihood, Ht, likelihoods, stdresid, stderrors, A, B, scores] = diagonal_bekk_T_mvgarch(data,p,q,options);
%
% INPUTS:
% data - A t by k matrix of zero mean residuals
% p - The lag length of the innovation process
% q - The lag length of the AR process
% options - (optional) Options for the optimization(fminunc)
%
% OUTPUTS:
% parameters - A (k*(k+1))/2+p*k+q*k+1 vector of estimated parameteters.
% For any k set of Innovation or AR parameters X,
% diag(X) will give the correct matrix
% To recover C, use ivech(parmaeters(1:(k*(k+1))/2), nu is the last parameter
% loglikelihood - The loglikelihood of the function at the optimum
% Ht - A k x k x t 3 dimension matrix of conditional covariances
% likelihoods - A t by 1 vector of individual likelihoods
% stdresid - A t by k matrix of multivariate standardized residuals
% stderrors - A numParams^2 square matrix of robust Standad Errors(A^(-1)*B*A^(-1)*t^(-1))
% A - The estimated inverse of the non-robust Standard errors
% B - The estimated covariance of the scores
% scores - A t by numParams matrix of individual scores
%
%
% COMMENTS:
% ***************************************************************************************
% * THIS FUNCTION INVOLVES ESTIMATING QUITE A FEW PARAMETERS. THE EXACT NUMBER OF
% * PARAMETERS NEEDING TO BE ESTIMATED IS (k*(k+1))/2+pk+qk. FOR A 5 VARIATE (1,1) MODEL
% * THIS INVLOVES 25 PARAMETERS. IN ADDITION, IT ESTIMATES A SCALAR_BEKK_MVGARCH
% * MODEL FOR STARTING VALUES.
% ***************************************************************************************
%
%
% Author: Kevin Sheppard
% kevin.sheppard@economics.ox.ac.uk
% Revision: 2 Date: 12/31/2001
% need to try and get some smart startgin values
if size(data,2) > size(data,1)
data=data';
end
[t k]=size(data);
k2=k*(k+1)/2;
scalaropt=optimset('fminunc');
scalaropt=optimset(scalaropt,'TolX',1e-2,'TolFun',1e-1,'Display','iter','Diagnostics','on','DiffMaxChange',1e-2);
startingparameters=scalar_bekk_mvgarch(data,p,q,scalaropt);
CChol=startingparameters(1:(k*(k+1))/2);
C=ivech(startingparameters(1:(k*(k+1))/2))*ivech(startingparameters(1:(k*(k+1))/2))';
newA=[];
newB=[];
for i=1:p
newA=[newA; (ones(k,1))*startingparameters(((k*(k+1))/2)+i)] ;
end
for i=1:q
newB=[newB;(ones(k,1))*startingparameters(((k*(k+1))/2)+i+p)];
end
startingparameters=[CChol;newA;newB];
if nargin<=3 | isempty(BEKKoptions)
options=optimset('fminunc');
options.Display='iter';
options.Diagnostics='on';
options.MaxFunEvals=500*length(startingparameters);
else
options=BEKKoptions;
end
startingparameters=[startingparameters;3];
parameters=fminunc('diagonal_bekk_T_est_likelihood',startingparameters,options,data,p,q,k,k2,t);
parameters(length(parameters))=2.1+parameters(length(parameters))^2;
[loglikelihood,likelihoods,Ht]=diagonal_bekk_T_likelihood(parameters,data,p,q,k,k2,t);
loglikelihood=-loglikelihood;
likelihoods=-likelihoods;
% Standardized residuals
stdresid=zeros(size(data));
for i=1:t
stdresid(i,:)=data(i,:)*Ht(:,:,i)^(-0.5);
end
%Std Errors
if nargout>=6
A=hessian_2sided('diagonal_bekk_T_likelihood',parameters,data,p,q,k,k2,t);
h=max(abs(parameters/2),1e-2)*eps^(1/3);
hplus=parameters+h;
hminus=parameters-h;
likelihoodsplus=zeros(t,length(parameters));
likelihoodsminus=zeros(t,length(parameters));
for i=1:length(parameters)
hparameters=parameters;
hparameters(i)=hplus(i);
[HOLDER, indivlike] = diagonal_bekk_T_likelihood(hparameters,data,p,q,k,k2,t);
likelihoodsplus(:,i)=indivlike;
end
for i=1:length(parameters)
hparameters=parameters;
hparameters(i)=hminus(i);
[HOLDER, indivlike] = diagonal_bekk_T_likelihood(hparameters,data,p,q,k,k2,t);
likelihoodsminus(:,i)=indivlike;
end
scores=(likelihoodsplus-likelihoodsminus)./(2*repmat(h',t,1));
B=cov(scores);
A=A/t;
stderrors=A^(-1)*B*A^(-1)*t^(-1);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -