📄 sched.c
字号:
break; } timer->expires -= (*p)->expires; p = &(*p)->next; } *p = timer; restore_flags(flags);}int del_timer(struct timer_list * timer){ unsigned long flags; unsigned long expires = 0; struct timer_list **p; p = &next_timer; save_flags(flags); cli(); while (*p) { if (*p == timer) { if ((*p = timer->next) != NULL) (*p)->expires += timer->expires; timer->expires += expires; restore_flags(flags); return 1; } expires += (*p)->expires; p = &(*p)->next; } restore_flags(flags); return 0;}unsigned long timer_active = 0;struct timer_struct timer_table[32];/* * Hmm.. Changed this, as the GNU make sources (load.c) seems to * imply that avenrun[] is the standard name for this kind of thing. * Nothing else seems to be standardized: the fractional size etc * all seem to differ on different machines. */unsigned long avenrun[3] = { 0,0,0 };/* * Nr of active tasks - counted in fixed-point numbers */static unsigned long count_active_tasks(void){ struct task_struct **p; unsigned long nr = 0; for(p = &LAST_TASK; p > &FIRST_TASK; --p) if (*p && ((*p)->state == TASK_RUNNING || (*p)->state == TASK_UNINTERRUPTIBLE || (*p)->state == TASK_SWAPPING)) nr += FIXED_1; return nr;}static inline void calc_load(void){ unsigned long active_tasks; /* fixed-point */ static int count = LOAD_FREQ; if (count-- > 0) return; count = LOAD_FREQ; active_tasks = count_active_tasks(); CALC_LOAD(avenrun[0], EXP_1, active_tasks); CALC_LOAD(avenrun[1], EXP_5, active_tasks); CALC_LOAD(avenrun[2], EXP_15, active_tasks);}/* * this routine handles the overflow of the microsecond field * * The tricky bits of code to handle the accurate clock support * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. * They were originally developed for SUN and DEC kernels. * All the kudos should go to Dave for this stuff. * * These were ported to Linux by Philip Gladstone. */static void second_overflow(void){ long ltemp; /* last time the cmos clock got updated */ static long last_rtc_update=0; extern int set_rtc_mmss(unsigned long); /* Bump the maxerror field */ time_maxerror = (0x70000000-time_maxerror < time_tolerance) ? 0x70000000 : (time_maxerror + time_tolerance); /* Run the PLL */ if (time_offset < 0) { ltemp = (-(time_offset+1) >> (SHIFT_KG + time_constant)) + 1; time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); time_offset += (time_adj * HZ) >> (SHIFT_SCALE - SHIFT_UPDATE); time_adj = - time_adj; } else if (time_offset > 0) { ltemp = ((time_offset-1) >> (SHIFT_KG + time_constant)) + 1; time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); time_offset -= (time_adj * HZ) >> (SHIFT_SCALE - SHIFT_UPDATE); } else { time_adj = 0; } time_adj += (time_freq >> (SHIFT_KF + SHIFT_HZ - SHIFT_SCALE)) + FINETUNE; /* Handle the leap second stuff */ switch (time_status) { case TIME_INS: /* ugly divide should be replaced */ if (xtime.tv_sec % 86400 == 0) { xtime.tv_sec--; /* !! */ time_status = TIME_OOP; printk("Clock: inserting leap second 23:59:60 GMT\n"); } break; case TIME_DEL: /* ugly divide should be replaced */ if (xtime.tv_sec % 86400 == 86399) { xtime.tv_sec++; time_status = TIME_OK; printk("Clock: deleting leap second 23:59:59 GMT\n"); } break; case TIME_OOP: time_status = TIME_OK; break; } if (xtime.tv_sec > last_rtc_update + 660) if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec;}/* * disregard lost ticks for now.. We don't care enough. */static void timer_bh(void * unused){ unsigned long mask; struct timer_struct *tp; cli(); while (next_timer && next_timer->expires == 0) { void (*fn)(unsigned long) = next_timer->function; unsigned long data = next_timer->data; next_timer = next_timer->next; sti(); fn(data); cli(); } sti(); for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) { if (mask > timer_active) break; if (!(mask & timer_active)) continue; if (tp->expires > jiffies) continue; timer_active &= ~mask; tp->fn(); sti(); }}/* * The int argument is really a (struct pt_regs *), in case the * interrupt wants to know from where it was called. The timer * irq uses this to decide if it should update the user or system * times. */static void do_timer(struct pt_regs * regs){ unsigned long mask; struct timer_struct *tp; long ltemp; /* Advance the phase, once it gets to one microsecond, then * advance the tick more. */ time_phase += time_adj; if (time_phase < -FINEUSEC) { ltemp = -time_phase >> SHIFT_SCALE; time_phase += ltemp << SHIFT_SCALE; xtime.tv_usec += tick + time_adjust_step - ltemp; } else if (time_phase > FINEUSEC) { ltemp = time_phase >> SHIFT_SCALE; time_phase -= ltemp << SHIFT_SCALE; xtime.tv_usec += tick + time_adjust_step + ltemp; } else xtime.tv_usec += tick + time_adjust_step; if (time_adjust) { /* We are doing an adjtime thing. * * Modify the value of the tick for next time. * Note that a positive delta means we want the clock * to run fast. This means that the tick should be bigger * * Limit the amount of the step for *next* tick to be * in the range -tickadj .. +tickadj */ if (time_adjust > tickadj) time_adjust_step = tickadj; else if (time_adjust < -tickadj) time_adjust_step = -tickadj; else time_adjust_step = time_adjust; /* Reduce by this step the amount of time left */ time_adjust -= time_adjust_step; } else time_adjust_step = 0; if (xtime.tv_usec >= 1000000) { xtime.tv_usec -= 1000000; xtime.tv_sec++; second_overflow(); } jiffies++; calc_load(); if ((VM_MASK & regs->eflags) || (3 & regs->cs)) { current->utime++; if (current != task[0]) { if (current->priority < 15) kstat.cpu_nice++; else kstat.cpu_user++; } /* Update ITIMER_VIRT for current task if not in a system call */ if (current->it_virt_value && !(--current->it_virt_value)) { current->it_virt_value = current->it_virt_incr; send_sig(SIGVTALRM,current,1); } } else { current->stime++; if(current != task[0]) kstat.cpu_system++;#ifdef CONFIG_PROFILE if (prof_buffer && current != task[0]) { unsigned long eip = regs->eip; eip >>= 2; if (eip < prof_len) prof_buffer[eip]++; }#endif } if (current == task[0] || (--current->counter)<=0) { current->counter=0; need_resched = 1; } /* Update ITIMER_PROF for the current task */ if (current->it_prof_value && !(--current->it_prof_value)) { current->it_prof_value = current->it_prof_incr; send_sig(SIGPROF,current,1); } for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) { if (mask > timer_active) break; if (!(mask & timer_active)) continue; if (tp->expires > jiffies) continue; mark_bh(TIMER_BH); } cli(); itimer_ticks++; if (itimer_ticks > itimer_next) need_resched = 1; if (next_timer) { if (next_timer->expires) { next_timer->expires--; if (!next_timer->expires) mark_bh(TIMER_BH); } else { lost_ticks++; mark_bh(TIMER_BH); } } sti();}asmlinkage int sys_alarm(long seconds){ struct itimerval it_new, it_old; it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; it_new.it_value.tv_sec = seconds; it_new.it_value.tv_usec = 0; _setitimer(ITIMER_REAL, &it_new, &it_old); return(it_old.it_value.tv_sec + (it_old.it_value.tv_usec / 1000000));}asmlinkage int sys_getpid(void){ return current->pid;}asmlinkage int sys_getppid(void){ return current->p_opptr->pid;}asmlinkage int sys_getuid(void){ return current->uid;}asmlinkage int sys_geteuid(void){ return current->euid;}asmlinkage int sys_getgid(void){ return current->gid;}asmlinkage int sys_getegid(void){ return current->egid;}asmlinkage int sys_nice(long increment){ int newprio; if (increment < 0 && !suser()) return -EPERM; newprio = current->priority - increment; if (newprio < 1) newprio = 1; if (newprio > 35) newprio = 35; current->priority = newprio; return 0;}static void show_task(int nr,struct task_struct * p){ static char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" }; printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr); if (((unsigned) p->state) < sizeof(stat_nam)/sizeof(char *)) printk(stat_nam[p->state]); else printk(" "); if (p == current) printk(" current "); else printk(" %08lX ", ((unsigned long *)p->tss.esp)[3]); printk("%5lu %5d %6d ", p->tss.esp - p->kernel_stack_page, p->pid, p->p_pptr->pid); if (p->p_cptr) printk("%5d ", p->p_cptr->pid); else printk(" "); if (p->p_ysptr) printk("%7d", p->p_ysptr->pid); else printk(" "); if (p->p_osptr) printk(" %5d\n", p->p_osptr->pid); else printk("\n");}void show_state(void){ int i; printk(" free sibling\n"); printk(" task PC stack pid father child younger older\n"); for (i=0 ; i<NR_TASKS ; i++) if (task[i]) show_task(i,task[i]);}void sched_init(void){ int i; struct desc_struct * p; bh_base[TIMER_BH].routine = timer_bh; if (sizeof(struct sigaction) != 16) panic("Struct sigaction MUST be 16 bytes"); set_tss_desc(gdt+FIRST_TSS_ENTRY,&init_task.tss); set_ldt_desc(gdt+FIRST_LDT_ENTRY,&default_ldt,1); set_system_gate(0x80,&system_call); p = gdt+2+FIRST_TSS_ENTRY; for(i=1 ; i<NR_TASKS ; i++) { task[i] = NULL; p->a=p->b=0; p++; p->a=p->b=0; p++; }/* Clear NT, so that we won't have troubles with that later on */ __asm__("pushfl ; andl $0xffffbfff,(%esp) ; popfl"); load_TR(0); load_ldt(0); outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */ outb_p(LATCH & 0xff , 0x40); /* LSB */ outb(LATCH >> 8 , 0x40); /* MSB */ if (request_irq(TIMER_IRQ,(void (*)(int)) do_timer)!=0) panic("Could not allocate timer IRQ!");}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -