⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sched.c

📁 linux1.1源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
			break;		}		timer->expires -= (*p)->expires;		p = &(*p)->next;	}	*p = timer;	restore_flags(flags);}int del_timer(struct timer_list * timer){	unsigned long flags;	unsigned long expires = 0;	struct timer_list **p;	p = &next_timer;	save_flags(flags);	cli();	while (*p) {		if (*p == timer) {			if ((*p = timer->next) != NULL)				(*p)->expires += timer->expires;			timer->expires += expires;			restore_flags(flags);			return 1;		}		expires += (*p)->expires;		p = &(*p)->next;	}	restore_flags(flags);	return 0;}unsigned long timer_active = 0;struct timer_struct timer_table[32];/* * Hmm.. Changed this, as the GNU make sources (load.c) seems to * imply that avenrun[] is the standard name for this kind of thing. * Nothing else seems to be standardized: the fractional size etc * all seem to differ on different machines. */unsigned long avenrun[3] = { 0,0,0 };/* * Nr of active tasks - counted in fixed-point numbers */static unsigned long count_active_tasks(void){	struct task_struct **p;	unsigned long nr = 0;	for(p = &LAST_TASK; p > &FIRST_TASK; --p)		if (*p && ((*p)->state == TASK_RUNNING ||			   (*p)->state == TASK_UNINTERRUPTIBLE ||			   (*p)->state == TASK_SWAPPING))			nr += FIXED_1;	return nr;}static inline void calc_load(void){	unsigned long active_tasks; /* fixed-point */	static int count = LOAD_FREQ;	if (count-- > 0)		return;	count = LOAD_FREQ;	active_tasks = count_active_tasks();	CALC_LOAD(avenrun[0], EXP_1, active_tasks);	CALC_LOAD(avenrun[1], EXP_5, active_tasks);	CALC_LOAD(avenrun[2], EXP_15, active_tasks);}/* * this routine handles the overflow of the microsecond field * * The tricky bits of code to handle the accurate clock support * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. * They were originally developed for SUN and DEC kernels. * All the kudos should go to Dave for this stuff. * * These were ported to Linux by Philip Gladstone. */static void second_overflow(void){	long ltemp;	/* last time the cmos clock got updated */	static long last_rtc_update=0;	extern int set_rtc_mmss(unsigned long);	/* Bump the maxerror field */	time_maxerror = (0x70000000-time_maxerror < time_tolerance) ?	  0x70000000 : (time_maxerror + time_tolerance);	/* Run the PLL */	if (time_offset < 0) {		ltemp = (-(time_offset+1) >> (SHIFT_KG + time_constant)) + 1;		time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);		time_offset += (time_adj * HZ) >> (SHIFT_SCALE - SHIFT_UPDATE);		time_adj = - time_adj;	} else if (time_offset > 0) {		ltemp = ((time_offset-1) >> (SHIFT_KG + time_constant)) + 1;		time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);		time_offset -= (time_adj * HZ) >> (SHIFT_SCALE - SHIFT_UPDATE);	} else {		time_adj = 0;	}	time_adj += (time_freq >> (SHIFT_KF + SHIFT_HZ - SHIFT_SCALE))	    + FINETUNE;	/* Handle the leap second stuff */	switch (time_status) {		case TIME_INS:		/* ugly divide should be replaced */		if (xtime.tv_sec % 86400 == 0) {			xtime.tv_sec--; /* !! */			time_status = TIME_OOP;			printk("Clock: inserting leap second 23:59:60 GMT\n");		}		break;		case TIME_DEL:		/* ugly divide should be replaced */		if (xtime.tv_sec % 86400 == 86399) {			xtime.tv_sec++;			time_status = TIME_OK;			printk("Clock: deleting leap second 23:59:59 GMT\n");		}		break;		case TIME_OOP:		time_status = TIME_OK;		break;	}	if (xtime.tv_sec > last_rtc_update + 660)	  if (set_rtc_mmss(xtime.tv_sec) == 0)	    last_rtc_update = xtime.tv_sec;}/* * disregard lost ticks for now.. We don't care enough. */static void timer_bh(void * unused){	unsigned long mask;	struct timer_struct *tp;	cli();	while (next_timer && next_timer->expires == 0) {		void (*fn)(unsigned long) = next_timer->function;		unsigned long data = next_timer->data;		next_timer = next_timer->next;		sti();		fn(data);		cli();	}	sti();		for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {		if (mask > timer_active)			break;		if (!(mask & timer_active))			continue;		if (tp->expires > jiffies)			continue;		timer_active &= ~mask;		tp->fn();		sti();	}}/* * The int argument is really a (struct pt_regs *), in case the * interrupt wants to know from where it was called. The timer * irq uses this to decide if it should update the user or system * times. */static void do_timer(struct pt_regs * regs){	unsigned long mask;	struct timer_struct *tp;	long ltemp;	/* Advance the phase, once it gets to one microsecond, then	 * advance the tick more.	 */	time_phase += time_adj;	if (time_phase < -FINEUSEC) {		ltemp = -time_phase >> SHIFT_SCALE;		time_phase += ltemp << SHIFT_SCALE;		xtime.tv_usec += tick + time_adjust_step - ltemp;	}	else if (time_phase > FINEUSEC) {		ltemp = time_phase >> SHIFT_SCALE;		time_phase -= ltemp << SHIFT_SCALE;		xtime.tv_usec += tick + time_adjust_step + ltemp;	} else		xtime.tv_usec += tick + time_adjust_step;	if (time_adjust)	{	    /* We are doing an adjtime thing. 	     *	     * Modify the value of the tick for next time.	     * Note that a positive delta means we want the clock	     * to run fast. This means that the tick should be bigger	     *	     * Limit the amount of the step for *next* tick to be	     * in the range -tickadj .. +tickadj	     */	     if (time_adjust > tickadj)	       time_adjust_step = tickadj;	     else if (time_adjust < -tickadj)	       time_adjust_step = -tickadj;	     else	       time_adjust_step = time_adjust;	     	    /* Reduce by this step the amount of time left  */	    time_adjust -= time_adjust_step;	}	else	    time_adjust_step = 0;	if (xtime.tv_usec >= 1000000) {	    xtime.tv_usec -= 1000000;	    xtime.tv_sec++;	    second_overflow();	}	jiffies++;	calc_load();	if ((VM_MASK & regs->eflags) || (3 & regs->cs)) {		current->utime++;		if (current != task[0]) {			if (current->priority < 15)				kstat.cpu_nice++;			else				kstat.cpu_user++;		}		/* Update ITIMER_VIRT for current task if not in a system call */		if (current->it_virt_value && !(--current->it_virt_value)) {			current->it_virt_value = current->it_virt_incr;			send_sig(SIGVTALRM,current,1);		}	} else {		current->stime++;		if(current != task[0])			kstat.cpu_system++;#ifdef CONFIG_PROFILE		if (prof_buffer && current != task[0]) {			unsigned long eip = regs->eip;			eip >>= 2;			if (eip < prof_len)				prof_buffer[eip]++;		}#endif	}	if (current == task[0] || (--current->counter)<=0) {		current->counter=0;		need_resched = 1;	}	/* Update ITIMER_PROF for the current task */	if (current->it_prof_value && !(--current->it_prof_value)) {		current->it_prof_value = current->it_prof_incr;		send_sig(SIGPROF,current,1);	}	for (mask = 1, tp = timer_table+0 ; mask ; tp++,mask += mask) {		if (mask > timer_active)			break;		if (!(mask & timer_active))			continue;		if (tp->expires > jiffies)			continue;		mark_bh(TIMER_BH);	}	cli();	itimer_ticks++;	if (itimer_ticks > itimer_next)		need_resched = 1;	if (next_timer) {		if (next_timer->expires) {			next_timer->expires--;			if (!next_timer->expires)				mark_bh(TIMER_BH);		} else {			lost_ticks++;			mark_bh(TIMER_BH);		}	}	sti();}asmlinkage int sys_alarm(long seconds){	struct itimerval it_new, it_old;	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;	it_new.it_value.tv_sec = seconds;	it_new.it_value.tv_usec = 0;	_setitimer(ITIMER_REAL, &it_new, &it_old);	return(it_old.it_value.tv_sec + (it_old.it_value.tv_usec / 1000000));}asmlinkage int sys_getpid(void){	return current->pid;}asmlinkage int sys_getppid(void){	return current->p_opptr->pid;}asmlinkage int sys_getuid(void){	return current->uid;}asmlinkage int sys_geteuid(void){	return current->euid;}asmlinkage int sys_getgid(void){	return current->gid;}asmlinkage int sys_getegid(void){	return current->egid;}asmlinkage int sys_nice(long increment){	int newprio;	if (increment < 0 && !suser())		return -EPERM;	newprio = current->priority - increment;	if (newprio < 1)		newprio = 1;	if (newprio > 35)		newprio = 35;	current->priority = newprio;	return 0;}static void show_task(int nr,struct task_struct * p){	static char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };	printk("%-8s %3d ", p->comm, (p == current) ? -nr : nr);	if (((unsigned) p->state) < sizeof(stat_nam)/sizeof(char *))		printk(stat_nam[p->state]);	else		printk(" ");	if (p == current)		printk(" current  ");	else		printk(" %08lX ", ((unsigned long *)p->tss.esp)[3]);	printk("%5lu %5d %6d ",		p->tss.esp - p->kernel_stack_page, p->pid, p->p_pptr->pid);	if (p->p_cptr)		printk("%5d ", p->p_cptr->pid);	else		printk("      ");	if (p->p_ysptr)		printk("%7d", p->p_ysptr->pid);	else		printk("       ");	if (p->p_osptr)		printk(" %5d\n", p->p_osptr->pid);	else		printk("\n");}void show_state(void){	int i;	printk("                         free                        sibling\n");	printk("  task             PC    stack   pid father child younger older\n");	for (i=0 ; i<NR_TASKS ; i++)		if (task[i])			show_task(i,task[i]);}void sched_init(void){	int i;	struct desc_struct * p;	bh_base[TIMER_BH].routine = timer_bh;	if (sizeof(struct sigaction) != 16)		panic("Struct sigaction MUST be 16 bytes");	set_tss_desc(gdt+FIRST_TSS_ENTRY,&init_task.tss);	set_ldt_desc(gdt+FIRST_LDT_ENTRY,&default_ldt,1);	set_system_gate(0x80,&system_call);	p = gdt+2+FIRST_TSS_ENTRY;	for(i=1 ; i<NR_TASKS ; i++) {		task[i] = NULL;		p->a=p->b=0;		p++;		p->a=p->b=0;		p++;	}/* Clear NT, so that we won't have troubles with that later on */	__asm__("pushfl ; andl $0xffffbfff,(%esp) ; popfl");	load_TR(0);	load_ldt(0);	outb_p(0x34,0x43);		/* binary, mode 2, LSB/MSB, ch 0 */	outb_p(LATCH & 0xff , 0x40);	/* LSB */	outb(LATCH >> 8 , 0x40);	/* MSB */	if (request_irq(TIMER_IRQ,(void (*)(int)) do_timer)!=0)		panic("Could not allocate timer IRQ!");}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -