📄 fdgmres.m
字号:
function [x, error, total_iters] = fdgmres(f0, f, xc, params, xinit)% GMRES linear equation solver for use in Newton-GMRES solver%% C. T. Kelley, July 24, 1994%% This code comes with no guarantee or warranty of any kind.%% function [x, error, total_iters] = fdgmres(f0, f, xc, params, xinit)%%% Input: f0 = function at current point% f = nonlinear function% the format for f is function fx = f(x)% Note that for Newton-GMRES we incorporate any % preconditioning into the function routine.% xc = current point% params = two dimensional vector to control iteration% params(1) = relative residual reduction factor% params(2) = max number of iterations% params(3) (Optional) = reorthogonalization method% 1 -- Brown/Hindmarsh condition (default)% 2 -- Never reorthogonalize (not recommended)% 3 -- Always reorthogonalize (not cheap!)%% xinit = initial iterate. xinit=0 is the default. This% is a reasonable choice unless restarted GMRES% will be used as the linear solver.%% Output: x=solution% error = vector of residual norms for the history of% the iteration% total_iters = number of iterations%% Requires givapp.m, dirder.m %% initialization%errtol=params(1);kmax=params(2);reorth=1;if length(params) == 3 reorth=params(3);end%% right side of linear equation for the step is -f0 if the% default initial iterate is used%b=-f0;n=length(b);%% Use zero vector as initial iterate for Newton step unless% the calling routine has a better idea (useful for GMRES(m)).%x=zeros(n,1);r=b;if nargin == 5 x=xinit; r=-dirder(xc, x, f, f0)-f0;end%%h=zeros(kmax);v=zeros(n,kmax);c=zeros(kmax+1,1);s=zeros(kmax+1,1);rho=norm(r);g=rho*eye(kmax+1,1);errtol=errtol*norm(b);error=[];%% test for termination on entry%error=[error,rho];total_iters=0;if(rho < errtol) % disp(' early termination ')returnend%%v(:,1)=r/rho;beta=rho;k=0;%% GMRES iteration%while((rho > errtol) & (k < kmax)) k=k+1;%% call directional derivative function% v(:,k+1)=dirder(xc, v(:,k), f, f0); normav=norm(v(:,k+1));%% Modified Gram-Schmidt% for j=1:k h(j,k)=v(:,j)'*v(:,k+1); v(:,k+1)=v(:,k+1)-h(j,k)*v(:,j); end h(k+1,k)=norm(v(:,k+1)); normav2=h(k+1,k);%% reorthogonalize?%if (reorth == 1 & normav + .001*normav2 == normav) | reorth == 3 for j=1:k hr=v(:,j)'*v(:,k+1); h(j,k)=h(j,k)+hr; v(:,k+1)=v(:,k+1)-hr*v(:,j); end h(k+1,k)=norm(v(:,k+1));end%% watch out for happy breakdown% if(h(k+1,k) ~= 0) v(:,k+1)=v(:,k+1)/h(k+1,k); end%% Form and store the information for the new Givens rotation% if k > 1 h(1:k,k)=givapp(c(1:k-1),s(1:k-1),h(1:k,k),k-1); end%% Don't divide by zero if solution has been found% nu=norm(h(k:k+1,k)); if nu~=0% c(k)=h(k,k)/nu; c(k)=conj(h(k,k)/nu); s(k)=-h(k+1,k)/nu; h(k,k)=c(k)*h(k,k)-s(k)*h(k+1,k); h(k+1,k)=0; g(k:k+1)=givapp(c(k),s(k),g(k:k+1),1); end%% Update the residual norm% rho=abs(g(k+1)); error=[error,rho];%% end while%end%% At this point either k > kmax or rho < errtol.% It's time to compute x and leave.%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -