📄 fdcgstab.m
字号:
function [x, error, total_iters] = ... fdcgstab(f0, f, xc, params, xinit)% Forward difference Bi-CGSTAB solver for use in nsola%% C. T. Kelley, December 29, 1994%% This code comes with no guarantee or warranty of any kind.%% function [x, error, total_iters]% = fdcgstab(f0, f, xc, params, xinit)%% Input: f0 = function at current point% f = nonlinear function% the format for f is function fx = f(x)% Note that for Newton-GMRES we incorporate any% preconditioning into the function routine.% xc = current point% params = two dimensional vector to control iteration% params(1) = relative residual reduction factor% params(2) = max number of iterations%% xinit = initial iterate. xinit=0 is the default. This% is a reasonable choice unless restarts are needed.%%% Output: x=solution% error = vector of residual norms for the history of% the iteration% total_iters = number of iterations%% Requires: dirder.m%%% initialization%b=-f0; n=length(b); errtol = params(1)*norm(b); kmax = params(2); error=[]; rho=zeros(kmax+1,1);%% Use zero vector as initial iterate for Newton step unless% the calling routine has a better idea (useful for GMRES(m)).%x=zeros(n,1);r=b;if nargin == 5 x=xinit; r=-dirder(xc, x, f, f0)-f0;end%hatr0=r;k=0; rho(1)=1; alpha=1; omega=1;v=zeros(n,1); p=zeros(n,1); rho(2)=hatr0'*r;zeta=norm(r); error=[error,zeta];%% Bi-CGSTAB iteration%while((zeta > errtol) & (k < kmax)) k=k+1; if omega==0 error('Bi-CGSTAB breakdown, omega=0'); end beta=(rho(k+1)/rho(k))*(alpha/omega); p=r+beta*(p - omega*v); v=dirder(xc,p,f,f0); tau=hatr0'*v; if tau==0 error('Bi-CGSTAB breakdown, tau=0'); end alpha=rho(k+1)/tau; s=r-alpha*v; t=dirder(xc,s,f,f0); tau=t'*t; if tau==0 error('Bi-CGSTAB breakdown, t=0'); end omega=t'*s/tau; rho(k+2)=-omega*(hatr0'*t); x=x+alpha*p+omega*s; r=s-omega*t; zeta=norm(r); total_iters=k; error=[error, zeta];end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -