⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch8_1.htm

📁 一个不错的matlab工程实际问题的解决方法
💻 HTM
字号:
<! Made by Html Translation Ver 1.0>

<HTML>

<HEAD>

<TITLE>  多项式的根 </TITLE>

</HEAD>



<BODY BACKGROUND="bg0000.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/bg0000.gif">

<FONT COLOR="#0000FF">

<H1>8.1  多项式的根</H1>

</FONT>

<HR>



<P>

一个多项式视其阶数而定,它的根可以有一个到数个,可能为实数也可能是复数。要求一高阶多项式的根往

往须借助数值方法,所幸<FONT FACE="Times New Roman">MATLAB</FONT>已将这些数值方法写成一函数<FONT COLOR=#FF0000 FACE="Times New Roman">roots(p)</FONT>,我们只要输入多项式的各阶系数(

以<FONT FACE="Times New Roman">

</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">p</FONT><FONT FACE="Times New Roman">

</FONT>代表)即可求解到对应的根。

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; p=[1 3 2];</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; r=roots(p)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">r =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">  -2</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">  -1</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; p=[1 -12 0

25 116];  % </FONT><FONT COLOR=#FF0000>注意二阶项系数为零须要输入,否则多项式的阶数就不对</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; r=roots(p)

   % </FONT><FONT COLOR=#FF0000>有实数根及复数根</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">r =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">  11.7473</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">   2.7028</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">  -1.2251 + 1.4672i</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">  -1.2251 - 1.4672i

<BR>

</FONT>

<P>

与<FONT FACE="Times New Roman"> </FONT><FONT COLOR=#FF0000 FACE="Times New Roman">roots</FONT><FONT FACE="Times New Roman">

</FONT>相关的函数尚有<FONT FACE="Times New Roman"> </FONT><FONT COLOR=#FF0000 FACE="Times New Roman">poly</FONT><TT><FONT FACE="Courier New">,

</FONT></TT><FONT COLOR=#FF0000 FACE="Times New Roman">real</FONT>,这二个函数的用途是要验算求解的根展开能求得原多项式。

例如有一个二次方程式的根为<FONT FACE="Times New Roman">2, 1</FONT>,则以下式计算原多项式

<P>

 <IMG SRC="img00001-5.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img8/img00001.gif">

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">poly</FONT><FONT FACE="Times New Roman">

</FONT>函数就是在求出多项式的各阶系数,其语法为<FONT FACE="Times New Roman">

</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">poly(r)</FONT>,其中<FONT FACE="Times New Roman">

</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">r</FONT><FONT FACE="Times New Roman">

</FONT>是代表根的阵列。而<FONT FACE="Times New Roman"> </FONT><FONT COLOR=#FF0000 FACE="Times New Roman">real</FONT><FONT FACE="Times New Roman">

</FONT>则是用来去除因计算时产生的假虚部系数,为何会有此种情形请参考以下的例子。

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; r=[-2 1];</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; pp=poly(r)

    % pp=(x+2)(x-1)=x^2+3x+2</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">pp =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">    1  3  2</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; p=[1 -4 6

-4];</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; r=roots(p)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">r =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">   2.0000   1.0000

+ 1.0000i   1.0000 - 1.0000i </FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; pp=poly(r)

      % </FONT><FONT COLOR=#FF0000>这个多项式的系数与原多项式</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">

p </FONT><FONT COLOR=#FF0000>相同</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">pp =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">    1    -4     6 

  -4</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; pp=[1 7 12

9];      % </FONT><FONT COLOR=#FF0000>再看另一个多项式</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; r=roots(pp)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">r =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">  -4.9395         

</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">  -1.0303 + 0.8721i</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">  -1.0303 - 0.8721i</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; pp=poly(r)

      % </FONT><FONT COLOR=#FF0000>注意因计算的误差会有假虚部产生</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">pp =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">   1.0000   7.0000

  12.0000   9.0000 + 0.0000i</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; pp=real(pp)

     % </FONT><FONT COLOR=#FF0000>可以</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">real</FONT><FONT COLOR=#FF0000>将假虚部去除,将原多项式还原</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">pp =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">   1.0000   7.0000

  12.0000   9.0000<BR>

</FONT><HR>

<A HREF="ch8.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch8.htm"><IMG SRC="lastpage.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/lastpage.gif" BORDER=0></A>

<A HREF="ch8_2.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch8_2.htm"><IMG SRC="nextpage-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/nextpage.gif" BORDER=0 HSPACE=10></A>

<A HREF="index.html" tppabs="http://166.111.167.223/computer/cai/matlabjc/index.html"><IMG SRC="outline-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/outline.gif" BORDER=0 HSPACE=6></A><BR>

<FONT SIZE=2 COLOR=#AA55FF> 上一页 下一页 讲义大纲 </FONT>

</BODY>

</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -