⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch5_3_2.htm

📁 一个不错的matlab工程实际问题的解决方法
💻 HTM
字号:
<! Made by Html Translation Ver 1.0>

<HTML>

<HEAD>

<TITLE> 特徵值与特徵向量 </TITLE>

</HEAD>



<BODY BACKGROUND="bg0000.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/bg0000.gif">

<FONT COLOR="#0000FF">

<H1>5.3.2 特徵值与特徵向量</H1>

</FONT>

<HR>



<P>

假设<FONT FACE="Times New Roman"> A</FONT>为一个<FONT FACE="Times New Roman">

<IMG SRC="img00004-2.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00004.gif"> </FONT>矩阵,而<FONT FACE="Times New Roman">

X </FONT>为一个有<I><FONT FACE="Times New Roman">n</FONT></I>列的栏向量,<IMG SRC="img00005-2.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00005.gif">为一纯量。考虑以下的数学式

<P>

 <IMG SRC="img00006-2.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00006.gif">

<P>

如果<FONT FACE="Times New Roman">X</FONT>由不为零的元素所组成,其中<IMG SRC="img00007-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00007.gif">要满足上式称为矩阵<FONT FACE="Times New Roman">A</FONT>的特徵值<FONT FACE="Times New Roman">(eigenvalue)</FONT>,而<FONT FACE="Times New Roman">X</FONT>称为矩阵<FONT FACE="Times New Roman">A</FONT>的特徵向量

<FONT FACE="Times New Roman">(eigenvector)</FONT>。特徵向量代表一个正规正交<FONT FACE="Times New Roman">(orthonormal) </FONT>的向量组,所谓的正规正交向量,是指这向量与自身做

内积的值为一单位向量;在几何关系上是指二量相互垂直且此其内积值再做正规化<FONT FACE="Times New Roman">(normalization)</FONT>。<BR>

<P>

上式也可改写为

<P>

 <IMG SRC="img00008-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00008.gif">

<P>

其中<FONT FACE="Times New Roman"> I </FONT>为<IMG SRC="img00009-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00009.gif">单位矩阵。

<BR>

<P>

 <IMG SRC="img00010-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00010.gif">

<P>

则eigenvalue可以用特徵方程式计算

<P>

<IMG SRC="img00012-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00012.gif">

<P>

上述的二次方程式可求解二个根分别为<IMG SRC="img00013-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00013.gif">,这二个值即为<FONT FACE="Times New Roman">A</FONT>的特徵值。而<FONT FACE="Times New Roman">A</FONT>的特徵向量求法如下

,分别将任一特徵值代入<IMG SRC="img00014-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00014.gif">。例如<IMG SRC="img00015-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00015.gif">

<P>

 <IMG SRC="img00016-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00016.gif">

<P>

另一个特徵值<IMG SRC="img00017-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00017.gif">代入,可以得到另一个特徵向量为<IMG SRC="img00018-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00018.gif">。我们可找到无限多个向量,满足上述的

特徵向量,例如

<P>

 <IMG SRC="img00019-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00019.gif"><BR>

<P>

因此要得到唯一的特徵向量,即是正交<FONT FACE="Times New Roman">(orthonormal)</FONT>特徵向量组<FONT FACE="Times New Roman">Q</FONT>,利用其特性<IMG SRC="img00020-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00020.gif">

<P>

 <IMG SRC="img00021-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00021.gif">

<P>

求解上式可得<IMG SRC="img00022.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00022.gif">。所以对应的正交特徵向量组<FONT FACE="Times New Roman">Q</FONT>为

<P>

 <IMG SRC="img00023.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00023.gif"><BR>

<P>

在上述例子中,矩阵<FONT FACE="Times New Roman">A</FONT>很简单大小为<IMG SRC="img00024.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00024.gif">,可以用手做演算。一但矩阵大小增加,以<FONT FACE="Times New Roman">MATLAB</FONT>内建函数做运

算,就很轻松。相关函数的语法为<FONT COLOR=#FF0000 FACE="Times New Roman">eig(A)</FONT>,得到一栏向量代表<FONT COLOR=#FF0000 FACE="Times New Roman">A</FONT>的特徵值;而<FONT COLOR=#FF0000 FACE="Times New Roman">[Q,d]=eig(A)</FONT>,其中<FONT COLOR=#FF0000 FACE="Times New Roman">Q</FONT>代表<FONT COLOR=#FF0000 FACE="Times New Roman">A</FONT>的特徵

向量,<FONT COLOR=#FF0000 FACE="Times New Roman">d</FONT>为一对角矩阵其元素代表<FONT COLOR=#FF0000 FACE="Times New Roman">A</FONT>的特徵值。

<BR>

<P>

在此示范上述例子

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; A = [0.5 0.25;

0.25 0.5];</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; [Q,d] = eig(A)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">Q =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">    0.7071    0.7071</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">   -0.7071    0.7071</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">d =      % </FONT><FONT COLOR=#FF0000>注意在对角线上的值才是特徵值</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">    0.2500        

0</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">         0    0.7500

<BR>

</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; Q*Q</FONT><FONT COLOR=#FF0000>'

    </FONT><FONT COLOR=#FF0000 FACE="Times New Roman">% Q*Q</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">=I</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans=</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman"> 1 0</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman"> 0 1</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; A*Q(:,1);

0.25* Q(:,1) % </FONT><FONT COLOR=#FF0000>验证<IMG SRC="img00025.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00025.gif">,注意</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">X=Q(:,1)

</FONT><FONT COLOR=#FF0000>为第一个特徵向量</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans =     % </FONT><FONT COLOR=#FF0000>为</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">A*X</FONT><FONT COLOR=#FF0000>的结果</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">    0.1768</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">   -0.1768</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans =     % </FONT><FONT COLOR=#FF0000>为<IMG SRC="img00026.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00026.gif">的结果</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">    0.1768</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">   -0.1768<BR>

</FONT><HR>

<A HREF="ch5_3_1.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch5_3_1.htm"><IMG SRC="lastpage.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/lastpage.gif" BORDER=0></A>

<A HREF="ch5_3_3.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch5_3_3.htm"><IMG SRC="nextpage-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/nextpage.gif" BORDER=0 HSPACE=10></A>

<A HREF="index.html" tppabs="http://166.111.167.223/computer/cai/matlabjc/index.html"><IMG SRC="outline-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/outline.gif" BORDER=0 HSPACE=6></A><BR>

<FONT SIZE=2 COLOR=#AA55FF> 上一页 下一页 讲义大纲 </FONT>

</BODY>

</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -