⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch11_2_2.htm

📁 一个不错的matlab工程实际问题的解决方法
💻 HTM
字号:
<! Made by Html Translation Ver 1.0>

<HTML>

<HEAD>

<TITLE>  常微分方程式 </TITLE>

</HEAD>



<BODY BACKGROUND="bg0000.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/bg0000.gif">

<FONT COLOR="#0000FF">

<H1>11.2.2  常微分方程式</H1>

</FONT>

<HR>



<P>

一阶常微分方程式<FONT FACE="Times New Roman"> (first-order ordinary

differential equation, ODE) </FONT>可写为

<P>

 <IMG SRC="img00004-8.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img11/img00004.gif">

<P>

其中<I><FONT FACE="Times New Roman">x</FONT></I>为独立变数,而<I><FONT FACE="Times New Roman">y</FONT></I>是<I><FONT FACE="Times New Roman">x</FONT></I>的函数。上述的一阶常微分方程式的解是<FONT FACE="Times New Roman">

<I>y</I>=<I>f</I>(<I>x</I>,<I>y</I>)</FONT>可以满足<I><FONT FACE="Times New Roman">y</FONT>'</I><FONT FACE="Times New Roman">=<I>f</I></FONT><I>'</I><FONT FACE="Times New Roman">=g(<I>x</I>,<I>y</I>)</FONT>。关于常微分

方程式的解法已再第十章说明过,它还需要初始条件才能得到为一的解。

<BR>

<P>

MATLAB解常微分方程式的语法是<FONT COLOR=#FF0000 FACE="Times New Roman">dsolve(</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">equation</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">,</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">condition</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">)</FONT>,其中<FONT COLOR=#FF0000 FACE="Times New Roman">equation</FONT>代表常微分方程式即<I><FONT FACE="Times New Roman">y</FONT>'</I><FONT FACE="Times New Roman">=g(<I>x</I>,<I>y</I>)</FONT>,且须

以<FONT COLOR=#FF0000 FACE="Times New Roman">Dy</FONT>代表一阶微分项<I><FONT FACE="Times New Roman">y</FONT>'</I> <FONT COLOR=#FF0000 FACE="Times New Roman">D2y</FONT>代表二阶微分项<I><FONT FACE="Times New Roman">y</FONT>''</I> ,<FONT COLOR=#FF0000 FACE="Times New Roman">condition</FONT>则为初始条件。

<BR>

<P>

假设有以下三个一阶常微分方程式和其初始条件

<P>

 <I><FONT FACE="Times New Roman">y</FONT>'</I><FONT FACE="Times New Roman">=3<I>x</I><SUP>2</SUP>,

  <I>y</I>(2)=0.5</FONT>

<P>

 <I>y'</I>=2<SUP>.</SUP>x<SUP>.</SUP>cos(y)<SUP>2</SUP>,  <I>y</I>(0)=0.25<IMG SRC="img00005-8.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img11/img00005.gif">

<P>

 <I><FONT FACE="Times New Roman">y</FONT>'</I><FONT FACE="Times New Roman">=3y+exp(2x),

y(0)=3</FONT>

<P>

对应上述常微分方程式的符号运算式为:

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt;soln_1 = dsolve(</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">Dy

= 3*x^2</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">,</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">y(2)=0.5</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans=</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">x^3-7.500000000000000</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt;ezplot(soln_1,[2,4])

   % </FONT>看看这个函数的长相

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt;soln_2 = dsolve(</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">Dy

= 2*x*cos(y)^2</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">,</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">y(0)

= pi/4</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans=</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">atan(x^2+1)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt;soln_3 = dsolve(</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">Dy

= 3*y + exp(2*x)</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">,</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">

y(0) = 3</FONT><FONT COLOR=#FF0000>'</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans=</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">-exp(2*x)+4*exp(3*x)</FONT><HR>

<A HREF="ch11_2_1.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch11_2_1.htm"><IMG SRC="lastpage.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/lastpage.gif" BORDER=0></A>

<A HREF="ch11_3.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch11_3.htm"><IMG SRC="nextpage-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/nextpage.gif" BORDER=0 HSPACE=10></A>

<A HREF="index.html" tppabs="http://166.111.167.223/computer/cai/matlabjc/index.html"><IMG SRC="outline-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/outline.gif" BORDER=0 HSPACE=6></A><BR>

<FONT SIZE=2 COLOR=#AA55FF> 上一页 下一页 讲义大纲 </FONT>

</BODY>

</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -