📄 learn_params.m
字号:
function CPD = learn_params(CPD, fam, data, ns, cnodes)% LEARN_PARAMS Compute the maximum likelihood estimate of the params of a generic CPD given complete data% CPD = learn_params(CPD, fam, data, ns, cnodes)%% data(i,m) is the value of node i in case m (can be cell array).% We assume this node has a maximize_params method.%error('no longer supported') % KPM 1 Feb 03if 1ncases = size(data, 2);CPD = reset_ess(CPD);% make a fully observed joint distribution over the familyfmarginal.domain = fam;fmarginal.T = 1;fmarginal.mu = [];fmarginal.Sigma = [];if ~iscell(data) cases = num2cell(data);else cases = data;endhidden_bitv = zeros(1, max(fam));for m=1:ncases % specify (as a bit vector) which elements in the family domain are hidden hidden_bitv = zeros(1, max(fmarginal.domain)); ev = cases(:,m); hidden_bitv(find(isempty(evidence)))=1; CPD = update_ess(CPD, fmarginal, ev, ns, cnodes, hidden_bitv);endCPD = maximize_params(CPD);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -