📄 mixexp2.m
字号:
% Fit a piece-wise linear regression model.% Here is the model%% X \% | |% Q |% | /% Y%% where all arcs point down.% We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian.% Q is hidden, X and Y are observed.X = 1;Q = 2;Y = 3;dag = zeros(3,3);dag(X,[Q Y]) = 1;dag(Q,Y) = 1;ns = [1 2 1]; % make X and Y scalars, and have 2 expertsdnodes = [2];onodes = [1 3];bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes);IRLS_iter = 10;clamped = 0;bnet.CPD{1} = root_CPD(bnet, 1);if 0 % start with good initial params w = [-5 5]; % w(:,i) is the normal vector to the i'th decisions boundary b = [0 0]; % b(i) is the offset (bias) to the i'th decisions boundary mu = [0 0]; sigma = 1; Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]); W = [-1 1]; W2 = reshape(W, [ns(Y) ns(X) ns(Q)]); bnet.CPD{2} = softmax_CPD(bnet, 2, w, b, clamped, IRLS_iter); bnet.CPD{3} = gaussian_CPD(bnet, 3, mu, Sigma, W2);else % start with rnd initial params rand('state', 0); randn('state', 0); bnet.CPD{2} = softmax_CPD(bnet, 2, 'clamped', clamped, 'max_iter', IRLS_iter); bnet.CPD{3} = gaussian_CPD(bnet, 3);endload('/examples/static/Misc/mixexp_data.txt', '-ascii'); % Just use 1/10th of the data, to speed things updata = mixexp_data(1:10:end, :);%data = mixexp_data; %plot(data(:,1), data(:,2), '.')s = struct(bnet.CPD{2}); % violate object privacy%eta0 = [s.glim.b1; s.glim.w1]';eta0 = [s.glim{1}.b1; s.glim{1}.w1]';s = struct(bnet.CPD{3}); % violate object privacyW = reshape(s.weights, [1 2]);theta0 = [s.mean; W]';%figure(1)%mixexp_plot(theta0, eta0, data);%suptitle('before learning')ncases = size(data, 1);cases = cell(3, ncases);cases([1 3], :) = num2cell(data');engine = jtree_inf_engine(bnet);% log lik before learningll = 0;for l=1:ncases ev = cases(:,l); [engine, loglik] = enter_evidence(engine, ev); ll = ll + loglik;end% do learningmax_iter = 5;[bnet2, LL2] = learn_params_em(engine, cases, max_iter);s = struct(bnet2.CPD{2});%eta2 = [s.glim.b1; s.glim.w1]';eta2 = [s.glim{1}.b1; s.glim{1}.w1]';s = struct(bnet2.CPD{3});W = reshape(s.weights, [1 2]);theta2 = [s.mean; W]';%figure(2)%mixexp_plot(theta2, eta2, data);%suptitle('after learning')fprintf('mixexp2: loglik before learning %f, after %d iters %f\n', ll, length(LL2), LL2(end));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -