📄 cg1.m
字号:
% Conditional Gaussian network% The waste incinerator emissions example from Lauritzen (1992),% "Propogation of Probabilities, Means and Variances in Mixed Graphical Association Models", % JASA 87(420): 1098--1108%% This example is reprinted on p145 of "Probabilistic Networks and Expert Systems",% Cowell, Dawid, Lauritzen and Spiegelhalter, 1999, Springer.%% For a picture, see http://www.cs.berkeley.edu/~murphyk/Bayes/usage.html#cg_modelns = 2*ones(1,9);%bnet = mk_incinerator_bnet(ns);bnet = mk_incinerator_bnet;engines = {};%engines{end+1} = stab_cond_gauss_inf_engine(bnet);engines{end+1} = jtree_inf_engine(bnet);engines{end+1} = cond_gauss_inf_engine(bnet);nengines = length(engines);F = 1; W = 2; E = 3; B = 4; C = 5; D = 6; Min = 7; Mout = 8; L = 9;n = 9;dnodes = [B F W];cnodes = mysetdiff(1:n, dnodes);evidence = cell(1,n); % no evidencell = zeros(1, nengines);for e=1:nengines [engines{e}, ll(e)] = enter_evidence(engines{e}, evidence);end%assert(approxeq(ll(1), ll)))ll% Compare to the results in table on p1107.% These results are printed to 3dp in Cowell p150mu = zeros(1,n);sigma = zeros(1,n);dprob = zeros(1,n);addev = 1;tol = 1e-2;for e=1:nengines for i=cnodes(:)' m = marginal_nodes(engines{e}, i, addev); mu(i) = m.mu; sigma(i) = sqrt(m.Sigma); end for i=dnodes(:)' m = marginal_nodes(engines{e}, i, addev); dprob(i) = m.T(1); end assert(approxeq(mu([E D C L Min Mout]), [-3.25 3.04 -1.85 1.48 -0.214 2.83], tol)) assert(approxeq(sigma([E D C L Min Mout]), [0.709 0.770 0.507 0.631 0.459 0.860], tol)) assert(approxeq(dprob([B F W]), [0.85 0.95 0.29], tol)) %m = marginal_nodes(engines{e}, bnet.names('E'), addev); %assert(approxeq(m.mu, -3.25, tol)) %assert(approxeq(sqrt(m.Sigma), 0.709, tol))end% Add evidence (p 1105, top right)evidence = cell(1,n);evidence{W} = 1; % industrialevidence{L} = 1.1;evidence{C} = -0.9;ll = zeros(1, nengines);for e=1:nengines [engines{e}, ll(e)] = enter_evidence(engines{e}, evidence);endassert(all(approxeq(ll(1), ll)))for e=1:nengines for i=cnodes(:)' m = marginal_nodes(engines{e}, i, addev); mu(i) = m.mu; sigma(i) = sqrt(m.Sigma); end for i=dnodes(:)' m = marginal_nodes(engines{e}, i, addev); dprob(i) = m.T(1); end assert(approxeq(mu([E D C L Min Mout]), [-3.90 3.61 -0.9 1.1 0.5 4.11], tol)) assert(approxeq(sigma([E D C L Min Mout]), [0.076 0.326 0 0 0.1 0.344], tol)) assert(approxeq(dprob([B F W]), [0.0122 0.9995 1], tol))end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -